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GENERAL INTRODUCTION AND SUMb:ARY 

'I'his final report  d iscusses  the work accomplished over  the past four year8  on 

segregation effects. The past year ,  this program was partially supported under NASA 

contract NAS 8-27891, "Segregation Effects During Solidification in Weightless Mells. " 

The contract covered the period from January 1, 1972 to Decemhcr 31, 1972. 

I'\r~o types of melt segregation effects were  studied: evaporative segregation, o r  

segregation due to surface  evaporation; and freezing segregation, o r  scgregation duc to 

liquid-solid phase transformation. 

These segregation effects a r e  closc . , related. In fact, evaporative segregat ion 

always precedes freezing segregation to some degree and must often be studied p r io r  to 

performing meaningful solidification experiments. This is particularly t rue  since 

evaporation may cause the melt composition, at least at the cri t ical  surface  regions o r  

layers  to he affected manyfold within seconds s o  that the surface  rei ion o r  layer melting 

point and cther  thermophysical propert ies,  nucleation character is t ics ,  base  for under- 

cooling, and cri t ical  velocity to avoid constitutional supercooling, may be completely 

unexpected. 

An important objective was, therefore,  to develop the necessary "normal cvapor- 

ation equations" fo r  predicting the compositional changes within specified t imes at tem- 

perature and to corre la te  these equations with a c t u ~ l  exper imel~ta l  data collected from 

the literature. An evaporative congruent tempcratbre ( o r  equi-evaporative temperature) 

was then defined and listed for various binary o r  ternary  alloys. The application of this 

unique temperature in explaining, predicting, o r  planning "anomalous" evaporative o r  

consti:rltional melting (on cooling) o r  solid~fication (on heating) experiments were  dis-  

cussed. N'c then computed the reactive jetting forces due to su r face  evaporation and, 

in part icular ,  showed that these forces  can be very substantial on a differentially heated 

sample and may completely destroy the unique zero-gravity environment in space manu- 

facturirlg. In addition, these jetting f o x e s  may initiate surface deformatio:~ and vibration 

o r  other fluid disturbances,  and may even produce new types of important convection 

currents  probably never anticipated. These studies a lso  showed which sample  materials  



are preferable and which to avoid, and what impurities are effective as stabilizing 

influences. The relation between normal evaporation and normal freezing was then 

considered. Finally, applications of evaporation to space manufacturing concerning 

material loss and dimensional control, compositional changes, evaporatii e purificatioa, 

surface cooling, materials standards, and freezing data interpretation were briefly 

described. 

In the area of segregation due to solidification, we started with an explanation of 

the normal freezing process and its successful use in the semiconductor industry. 

Various constitutional diagrams demonstrated the desirability of using non-constant 

segregation coefficient techniques in metallurgical studies. We then stated the basic normal 

freezing differential equation, together with its solutions for cases wb.ere the liquidus and 

solidus are quadratic, cubic, high-degree polynomial, and exponential functions of the melt 

temperature. The meaning of constant segregation coefficient was discussed, together 

with the associated e r r o r s  due to curvatures of the liquidus and solidus lines and the 

best value of constant segregation coefficient for a given solidification experiment. 

Numerical methods for computing the normal freezing behavior were then given. Finally 

and as an example, the steady state solidification of the Ni-Sn system under conditions of 

limited liquid diffusion and non-constant segregation coefficients was described. 

The report ends with some suggestions for future work. 



PART I 

EVAPORATIVE SEGREGATION 

Section 1. INTRODUCTION 

In normal evaporation, we assume that the evapolzting alloy is always homogeneous 

in composition, that the vapor is instantly removed, arid that the alloy follows Raoult's 

law (Dushman 1962). Such conditions exist o r  a r e  approached in an induction-stirred, 

melt-in-vacuum, o r  liquid drop-in-space. 

We deal here mainly with the normal evaporation of binary allays. i I particular, 

we study the evaporative segregation patterns, i. e., the type and degree nf enric.hmer.ir 

o r  depletion of solutc in the evaporating source at different evaporation temperatures and 

times. 

Normal evaporation is important in space melting and solidification for the following 

reasons: 

a Significant evaporation of alloy components always occurs a1 high temperatures 

in space vacuum environments 

High-temperature evaporation of alloys is generally a neglected a r ea  of 

systematic research. Yet, unless the complete evaporative segregation 

behavior is  understood and analyzed, solidification and i ts  related segregation 

effects may not be properly studied because of ill-defined initial conditions. 

Before the liquid alloy can be controllably solidified o r  even melted, there i s  

invariably some surface evaporation to cause changes in composition, freezing 

temperature, supercooling characteristics, nucleation and growth morphology 

conditions, and the like 

a Controlled space evaporation probably most closely meets the requirements 

of normal evaporation. We may thus be able to obtain material purity o r  

evaporation standards, thermal properties, o r  even basic thermodynamic 

properties such as heat of evaporation, activity coefficients, sticking 



coefficients, etc. ,  that a r e  difficult o r  impossible to obtain on earth 

Normal evaporation is a much simpler process than normal freezing, 

since the former does not involve such complicated phenomena a s  

nucleation, phase transformation, and constitutional o r  nonconst itutional 

supercooling. Thus in normal evaporation we may, for specific geo- 

metries o r  alloy systems, ideally isolate and investigate such other 

phenomena a s  heat conduction o r  radiation, liquid o r  solid diffusion, 

fluid dynamics, and convection currents. Exact knowledge of these 

phenomena is necessary to understand solidification 

Evaporation causes surface cooling due to the heat of evaporation. This 

evaporative cooling effect i s  particularly important in low-melting materials 

Different rates of evaporation at various surface regions give r i s e  to 

~jnha!anced forces w.d moncnta that may produce e r ra t ic  o r  unwanted 

accelerations, surface distortions and vibrations, exceedingly large 

"equivalent gravitiestt, and possibly new types of powerful convection 

currents in zero-gravity conditions, a s  will be discussed later 

Evaporation may cause the surface composition of certain unwanted or  

unsuspected impurities to be increased a thousandfold o r  millionfold 

within seconds so  that the layer's melting point and other thermophysical 

properties, nucleation characteristics, base for undercooling, and critical 

velocity to avoid constitutional supercooling, may be completely unexpected. 

In fact, anomalous "constitutional" o r  evaporative melting on cooling, o r  

solidification on heating, is possible because of surface evaporation 



Section 2. DIFFERENTIAL EQUATION OF NORMAL EVAPORATION 

Zinsmeister (1964) and Li (1966) gave the exact equation for the ~ lo rma l  evaporation 

of binary alloys. This equation, relating the concentration m of the solute in the 

evaporating alloy at time t ,  when the mole fraction of the alloy remaining is F, is 

where N and N are ,  respectively, the number of moles of both solvent and solute at 
0 

evaporating times t = t and t = 0; m i s  the initial molar concentration of the evap~ra t ing  
0 

alloy; and U and V are,  respectively, the evaporation rate of pure solute and solvent. 

2 
The evaporation rates  in mol/m /sec f o ~  pure solute and solvent a r e  

and 

-9 
where K = 5.833 x 1 0  a ,  cu = 1 for most metals (Dushman 1962); M and Mv are ,  u 
respectively, the molecular weights of the solute and solvent atoms; T is  the evaporating 

temperature in degrees Kelvin; and A and B o r  AV and B are evaporating constants for  
u u v 

the solute o r  solvent. Table 1-1 gives the values of the constants A and B for 51 different 

elements, a s  given by Dushman (1962). Data on the melting point and density of these 

elements were obtained from Smithell (1967). 



TABLE 1-1 EVAPORATING CONSTANTS FOR 51 CHEMICAL ELEMENTS 

i 

Element 

Ag 
A 1 
Au 
B 
Ba 
Be 
Bi 
C 
Ca 
Cb 
Cd 
c e 
Co 
C r  
C s 
Cu 
Fe 
Ga 
Ge 
In 
Ir 
I.' 

La 
Li 
Mg 
Mn 
Mo 
Na 
N i 

B/lOOO 

14.27 
15.94 
17.58 
29.62 

8.76 
16.47 

9.53 
40.03 

8.94 
40.40 

5.72 
en. i n  
21.11 
20.00 

3.80 
16.98 
19.97 
13.84 
18.03 

, 12.48 
31.23 
4.48 

20.85 
8.07 
7.65 

13.74 
30.85 

5.49 
20.96 

A 

11.85 
11.79 
11.89 
13.07 
10.70 
12.01 
11.18 
15.73 
11.22 
14.37 
11.56 
13.74 
12.70 
12.94 

9.91 
11.96 
12.44 
11.41 
11.71 
11.23 
13.07 
10.28 
11.60 
10.99 
11.64 
12.14 
11.64 
10.72 
12.75 

0s 
t'b 
Pd 
P t  
Rb 
Rh 
Ru 
Sb 2 1 :; 

I 

37.00 
9.71 

19.71 
27.28 
4.08 

27.72 
33.80 

8.63 
18.57 
21.30 

13.59 
10.77 
11.78 
12.53 
10.11 
12.94 
13.50 
11.15 
11.94 
12.72 

At. Wt 

107.9 
26.98 

197.0 
10.82 

137.4 
9.013 

209.0 
12.01 
40.08 
92.91 

112.4 
140.1 

58.94 
52.01 

132.9 
63.54 
55.85 
69.72 
72.60 

114.H 
192.2 

39.10 
138.9 

6.94 
24.32 
54.94 
95.95 
22.99 
58.71 

190.2 
207.2 
106.7 

Melting Pt 
K 

1234 
933.3 

1336 
2300 

977.1 
1556 

544.1 
3973 
1123 
2688 

594.1 
1077 
1765 
21 76 

301.8 
1356 
1812 

302.8 
1210 

429.7 
2716 

336.3 
1103 
459.7 
924 

1517 
2883 

371 
1726 

Density 

10.5  
2.7 

1 9 . 3  
2.34 
3.5 
1.848 
9. a 
2.25 
1.54 
8.57 
8.64 
6.75 
8 .9  
7.1 
1 .87 
8.96 
7.87 
5.91 
5.32 
n 1 . 5  n 

22.4 
.86 

6.19 
.534 

1.74 
7.4 

10.2 
.97 

8.9 
2970 

600.6 
22.5 
11.68 
12. 
21.45 
1 .53 

12.4 
12.2 

6.68 
2.99 
2.34 

a 

I it; 195.1 
85.48 1 312.1 

102.9 
101.1 
243.5 
44.96 
28.09 

A 

2239 
2700 

903.7 
1673 
1685 



TABLE 1-1 EVAPORATING CONSTANTS FOR 51 CHEMICAL ELEMENTS (Continued) 

Differentiating Eq (1) yields 

but 

r 

Element 

Sn 
S r 
T a  
Th  
T i  
T 1 
U 
V 
W 
Y 
Zn 
Z r  

where A i s  the evaporating a r e a  nf the alloy, assumed constant here.  

Substituting Eq (5) into Eq (4) resu l t s  in 

A 
dt = ~ r n ~ ( 1 - m )  dm 

Density I 

where 
N (1-m ) 

a+2 

G = -  0 0 

~ + 1  
A(U-V)m; 

7.3 
2.6 

16.6 
11.85 

4.5 
11.85 
19.97 

6.1 
19.3  

4.47 
7.14 
6.49 

Melting Pt  
K 

5 05 
1033 
3270 
1968 
1941 

576.8 
1406 
2290 
3653 
1773 

692.6 
2130 

1 

A 

10.88 
10.71 
13.04 
12.52 
12.50 
11.07 
11.59 
13.07 
12.40 
12.43 
11.63 
12.33 

. 

B/1000 

14.87 
7.83 

40.21 
28.44 
23.23 

8.96 
23.31 
25.72 
40.68 
21.97 

6.56 
30.26 

At .Wt  

118.7 
87.63 

180.9 
232.0 

47.90 
204.4 
238.1 

50.95 
183.9 

88.91 
65.38 
91.22 



2.1 EVAPORATING RATES AND EVAPORATIVE SEGREGATION COEFFICIENT 

The evaporating r a t e s  of elements,  being exponential functians of the evaporating 

temperature as shown in Eq ( 2 )  and (3),  a r e  strongly temperature-clependent. At the 
-15 -14 

melting point of nickel, i. e .  , 1726K, these ra tes  vary from 1.30 x 1 0  , I .  05 x 1 0  
2 

1.25 x 10-13, 1 .68 x 10-12, and 2.76 x 10-l3 ~ g / m  / s e c  respectively, for  \\', Ta,  Cb, 

C ,  and 0s to 26,200, 8270, 7670, 7240, 4250, 2330, and 1120 Kg/mL.'sec for  Cd, Cu, 
-15 

Zn, Rb, K, Na, and Mg. The molar  evaporating ra tes  vary  f rom 7.11 x 1 0  , 
-14 -12 -14 2 

5 . 5 7 ~ 1 0  , 1 . 3 5 ~ 1 0  , 1 . 4 5 ~ 1 0 - ~ ~ ,  a n d 1 . 4 0 ~ 1 0  rnoles/m / see respec t ive ly  
5 5 5 

fo r  W, Ta,  Cb, Os,  and C to 2.34 x 10 , 1.31 x 1 0  , 1.17 x lo5 ,  1.09 x lo5 ,  1.00 x 1 0  , 
4 2 

8 .5  x 1 0  moles /m /sec  for  Cd, Cu, Zn, K, Na, and Rb. The evaporating r a t e s  can a lso  

be expressed in t e r m s  of the velocity of interfacial movement in m/sec ,  i. e . ,  from 
-1 2 6.74 x 10-16, 6.31 x 10'15, 1 .36 x 10-13, 1 . 2 3  x 10-12. and 7.45 x 10  respectively 

6 6 6 6 for  W, Ta,  Cb, Os,  and C to 4.96 x 10  , 4.72 x 1 0  , 3.03 x 1 0  , 2.40 x lo6 ,  1 .07 x 1 0  , 
5 

9.25 x 1 0  for K, Rb, Cd, Na, Zn, and Cu. F o r  the solvent nickel in nickel alloys, the 
-4 2 -3 2 

evaporating ra tes  a t  1726K a r e  4.35 x 1 0  Kg/m /sec,  7.42 x 1 0  moles/m /set, and 

4.89 x rn/sec ( o r  489 A/sec).  Note that the evaporating r a t c s  of the various solute 

elements in nickel generally vary by many o r d e r s  of magnitude. 

When the solute concentration in the evaporating alloy is m mole fraction, the 

solute concentration of the,vapor i s  m ~ / [ m ~ + ( l - m ) ~ ]  , where IT and U a r e ,  a s  defined 

previously, the molar evaporating r a t e s  of the solvent and solute, respectively. The 

evaporative segregation coefficient k is, therefore,  
v 

which var ies  with m and U and V and, hence, the evaporating temperature  T.  

Since U and V a r e  generally widely different, we have the following two usual cases :  

U sV: k = 1 /m, i. e . ,  the evagorative segregation coefficient depends only v 
on m, but not on T. 

a For  the more  important c a s e  of U >>V, in which the solute may be  concentrated 

manyfold on the surface,  



If, in addition to U << V, m i s  smal l ,  i. e.,  m <<I ,  k = U/V = constant v 
at  a given T. 

Thus, for smal l ,  particiilarly t race ,  amount of low-evaporative impurities o r  

solutes in nickel alloys evaporating at 1724K. the evaporating segregation coefficient 
-1 2 -11 -1 0 -9 

k = U / V c a n b e a s s m a l l a s 1 . 3 8 x 1 0  , 1 . 2 9 ~ 1 0  , 2 . 7 8 ~ 1 0  , 2 . 5 1 ~ 1 0  , and 
v 

-8 
1.53 x 1 0  for W, Ta,  Cb, Os, and C, respeclively. 

F o r  highly evaporative impurities (relat ive to nickel), the evaporative segregation 

coefficient a t  1726K i s  

- 6 -9 
which can be very large for  small  values of m. Thus, if m = 1 0  o r  1 0  , the instan- 

6 9 
taneous evaporative segregation coefficient is 10 o r  1 0  . Since U >>V,  m i s  rapidly 

decreasing. Hence, the evaporative segregation coefficient may rapidly decrease  by 

many orders  of magnitude within a single experimental run, even for  the samc inpur i ty ,  

when U >>V.  

2.2 SPECIAL CASE SOLUTIONS O F  THE NORMAL EVAPORATION EQUATION 

Equations (6)  - (9) enable u s  to determine the evaporating time, t,  for  an evapor- 

ating alloy to reach a specific solute concentration, m. Unfortunately, these equations 

are not exactly solvable in the general case.  All of the following special and important 

cases,  (except Case V), however, a r e  solvable in closed forms. 

Case  I: The solute is much more  evaporative than the solvent, i. e . ,  U >>V; 

o r  .-. -1 and 0 = -2, In this case  

I 
dt, = 

& 2 
m(l -m) 



where 

p 

.' 
and the evaporating time is: 

( l -m )m 
O + 

KI (1-m) 

In terms of the initial and final weight fractions of the solute in the evaporating 

alloy, w and w respectively, the evaporating time can be shown to be: 4 0 

For given m and evaporating temperature T o r  evaporatiiig rale U, the evaporation 
0 

constant G i s  proportin~a! to ii /'A. For a dilute evaporating alloy i n  spherical form of 
1 0 

diameter d, density p ,  and weight W, G i s  proportional to dp/W. Hence, for dilute 
1 

alloys and given initial and final conditions, the evaporatitg time is directly proportional 

to the diameter d of the evaporatii~g source. 

When m - - m the second te:.m in the bracket in Eq. 11 (or  l l a )  may be nearly 0. 
0 ' 

The evaporation time for this first  case,  t , i s  then a logarithmic function of m (or w) ,  
1 

as  has been experimentally observed (see e. g. , Tefelske and Chang 1972). 

Also, when m m 0, 
0 -  

When, however, m z mo 2 :. the logarithmic term in Eq 11 or  l l a  may be small. 

The evaporating time t is  then approximately linearly related to the final solute con- 
1 

centration (m or ~j in the source. 

Case 11: The solvent is much more evaporative than the solqte, i .e. ,  V >> U; or  

n =  -2 and @ = -1. In this case 



where 

and 

In terms of weight fractions - 'I 

For the initial stages of evaporation, i . e . ,  m m , t also becomes a logarithmic 
0 2 

i"urlc1ion of m, as has been observed. On the other hand, when m - m - 0, t may be - 0 -  2 
approximately linearly related to l/m. 

Case 111: a, = (OV-U)/(U-V) = 0, i.e., U = 2V and P = -3 

where 

where 

Cage IV: @ = (V-2U)/(U-V) = 0, i . e . ,  V = 2U and Q = -3. In this case 



Equations (15) and (16) show that under some conditions, the evaporating time, 
-2 -2  

t ,  i s  better represented by linear functions of (1-m) o r  m than by logarithmic 

functions of m. 

Case V: For relatively dilute alloys, i. e. , m and g m <<I, the following solution 

by ser ies  expansion can be obtained from Eq (6): 

and 
a+l a+l a + 2  a + 2  a+i+l a+i+l 

m - m  m - m m - m 
o o o i 

t = G  - @ +  ... + (-1) - R . .. (18) 
5 r + l  a + 2  ( a  + i + l ) i !  

t h 
For computer calculations, it is desirable to know the ratio of the i term to the 

th 
.- 

(i-1) term. Thus, 

which is generally less  than ~ m / i  or  Rm / i .  
0 

Because Bm << 1 and i constantly increases with each additional term, this ser ies  

converges rapidly unless 0 is very large, i.e., unless U = V, which leads to Case VI. 

Case VI: The solute and solvent a r e  evaporating at equal rates,  i. e . ,  U = V. In 

this case,  we would expect 

m = m for all t . 
0 

(20) 

There is, then, no evaporative segregation, i.e., there is neither solute enrichment nor 

depletion in the evaporating source. 

For any pair of solvent and solute, there is a unique temperature, T , at which 
s 

U = V and, hence, the alloy concentration remains stable o r  constant. From Eq (2)  and 

(31, 



This unique "equi-evaporative, o r  evaporative congruent, temperature" T has 
S 

some important implications and applications, as will be shown. 

Case VII: With extremely dilute alloys, i. e .  , m 2: m - 0, \ le bnve (Li,  L96,;) 
0-  

F = N / N ~  = (m/mo) c~+l (22) 

Hence, 

2.3 EXAMPLES QF COMPUTATION 

A generalized computer program has  been written t,o analyze the evaporative seg- 

regation pattern l i .e . ,  type and degree), based on the equations given above, on various 

potential aerospace mater ia ls  suitable for space experiments. Computations have been 

made that give the maximum allowable t ime (often l ess  than a minute o r  second) for space 

experiments without m a t e r ~ a l  loss  o r  compositional changes a; a specific d amount for 

various solute elements in nickel, iron, o r  other alloys. 

2.3.1 Nickel Alloys 

Several nickel alloys have been selected for  the M512 Skylab experimects. As an 

example of the use  of the various derived equations, the evapcration behavior of an alloy 
I I 

containing 8% by weight of A1 in Ni at the melting point of pure Ni (i. e . ,  1726K) i s  com- 

, . . puted. Here, the solute ele-,lent ( A l )  i s  comparatively high1.y evaporative relative to 
L .  

the solvent (Ni). Equation (11) therefore applies, and the time, t to reach a final 
. . : i 

1 * 
solute concentration rn from a specified initial concentration rn i s  directly pro- 

i o 
portional to NoA/U (in the G constant). Table 1-2 gives the t imes  tb reach various 

1 

i ! final A1 concentrations for one mole (5.367 x I O - ~ K ~ )  of the 8% A1 in Ni alloy 

(mo = 0.159) evaporating at 1726K (the melting point of Xi) from i ts  (supposedly 
1 - -3 2 
i .  constant) 10 m ~ u r f a c e .  



'? 
i TABLE 1-2 NORMAL EVAPORATION OF 8T BY WEIGHT ALUIVIINUM 

,f 
! .  
, . 

v 

IN NICKEL AT 1726K 

Evaporation Time, 
Sec 

0. 
28.3 
57.1 
86.5 
11 7 
147 
179 
21 1 
244 
277 
31 2 
34 7 
384 
421 
460 
500 
542 
584 
629 
6 75 
723 
7 74 
827 
882 
94 0 
1000 
1070 
1130 
1210 
1290 
1980 
1480 
1590 
1713 
1850 
201 0 
221 0 
2470 
2820 
3430 

4 

Alloy Remaining 
Weight, Kg I Mole 

I 

Final Solute 
I 

Weight Fraction 

0.080 
0.078 
0.076 
0.074 
0.072 
0.070 
0.068 
0.066 
0.064 
0.062 
0.060 
0.058 
0.056 
0.054 
0.052 
0.050 
0.048 
0.046 
0.044 
0.042 
0.040 
0.038 
0.036 
0.034 
0.032 
0.030 
0.028 
0.026 
0.024 
0.022 
0.020 
0.018 
0.016 
0.014 
0.012 
0.010 
0,008 
0.006 
0.004 
0.002 

5.366x10-~ 
5.353 r 10:; 
5.341 x 10 
5.328 x lo-' 
5.315 x 
5.303 x l ~ 1 . - ~  

- 3 
5.290 * ?O 

-3 
5.2'". 0 

-3 
5.2.:' d 
5.25 

-3 

5.240 x - 3 
5.227 x lom3 
5.214 x 
5.202 x 10 

-3 
5.189 x 
5.177 x 10 
5.164 x - 3 
5.152 x 
5.139 x 10 
5.126 x 
5.114 x 10:: 
5.101 x 10 

-3 
5.088 x loe3 
5.075 x lom3 
5.062 x 10 

-3 
5.049 x 
5.036 x 10 
5.023 x 10:; 
5.009 x 10 
4.996 
4.982 
4.967 
4.953 
4.938 x 10:; 
4.922 x 10 
4.905 
4.887 x 
4.865 x lom3 
4.841 x 
4.805 x 

Concentration 
Mole Fraction 

0.1591 
0.1555 
0.1518 
0.1481 
0.1444 
0.1407 
0.1370 
0.1333 
0.1295 
0.1258 
0.1220 
0.1182 
0.1143 
0.11 05 
0.1066 
0.1028 
0.0989 
0.0950 
0.0910 
0.0871 
0.0831 
0.0792 
9" 0752 
0.0711 
0.0671 
0.0631 
0.0590 
0.0549 
0.0508 
0.0467 
0.0425 
0.0384 
0.0342 
0.0300 
0.0257 
0.0215 
0.01 72 
0.0130 
0.0087 
0.0043 

1 1.0000 
0.9955 
0,9910 
0,9865 
0.9820 
0,9775 
0.9731 
0.9686 
0,9542 
0.9598 
0.9554 1 
0.951 0 
0.9467 
0.9423 
0.9379 
0.9336 
0.9292 
0.9249 
0.9206 
0.9163 
0.91 20 
0.9076 
0.9033 
0.8990 
0.8947 
0.8904 
0.8860 
0.881 7 
0.8773 
0.8729 
0.8685 
0.8640 
0.8594 
0.8549 
0.8501 
0.8453 
0.8401 
0.8346 
0.8284 
0.8204 - - 



-2 
Thus, it takes 312 seconds for 5.37 x 1 0  Kg (1 mole) of an 8%' A1 in Ni to 

-3 2 
change t o  6% in A1 concentration (A = 1 0  m ), with a decrease  of 1.26 x 1 0 - ~ ~ g  

(2.33%) in the weight of the evaporating alloy. The same evaporating Ni-A1 alloy Likes 

an additional 411 lseconds to  change i t s  aluminum colicentratiorl to 4%, with an additional 

loss of 4.71% in alloy weight. An additional t ime of 657 seconds i s  required for  the same 

alloy to  change in aluminum concc..:ration by v o t h e r  2% (to 2%) with an additional loss 

of 13.15% in the alloy weight. If the evaporating alloy i s  spread out a s  a thin layer with 
-2 2 -3  2 

an evaporating a r e a  A = 1 0  m instead of 1 0  m , al l  the evaporating t imes  given in 

Table 1-2 must be reduced by a factor of 10, in accordance with Eq 11 o r  l l a .  

The alloy evaporating ra te  i s  directly proportional to  the evaporating a r e a  A 

and gene. ally must, therefore, continuously decrease  with shrinking alloy volume, mass ,  

o r  surface. If the geometric shape of the evaporating alloy .mple is fixed and known, 

the t ime t o  reach a certain sample . , i ze  o r  deposit comj~osition can ue computed by 

numerical techniques based on Eq 6-9. M:~lten materials  in zero-gravity e n v i r o n m ~ n t s  

readily assume spherical  shapes due to  surface  tension. An example of such sphericai  
- 3 

evaporation at the melting point of pure nickel, i .e.,  1726K, for a 6.35 x 1 0  m 

($ In. ) sphere with a composition containing 8 weight percent of aluminum in nickel is 

depicted in Figure 1-1. In this figure, curve 1 represents  the weight f ~ a c t i o n  of the 

remaining evaporating sphere (WFR); curve 2 the diameter of the remaining sphere (DM); 

curve 3 the weight fraction of aluminum in the remaining sphere (WFA);  m d  curvo 4 the 

weight fraction of aluminum in the vapor (WFV). All four parameters  a r e  plotied against 

the evaporation time in seconds. 

Figures 1-2 and 1-3 show the normal evaporation behavior at 1726K of several  nickel 

alloys ccntaining 10% by weight of such highly evaporative solutes a s  Cd, K,  Na, and Rb, 

these elements being much morp volatile than Al .  Figure 2 gives the ..veight fraction 

remaining in g r a m s  upon reaching specified solute concentrations in weight fractions, o r  

weight percentages from the original 1 0  weight percent and decreasing successively by 

0.5%. Figure 3 gives the evaporating t imes  (t. in Eq 11) to reach the same successive 
1 

-3 2 
solute concentrations. Again, the evaporating a r e a  A is assumed constant a t  10 m . 
It can be  seen that all these fast-evaporating elements reach the different final solute 

concentrations five o r d e r s  of magnitude fas ter  than Al .  Specifically, they take only about 
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10" - 4 (WFV) - 
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104 1 I 1 1 

10 100 loo0 10.000 

EVAPORATION TIME. SEC 

Fig. 1-1 Normal Evaporation at 1726K of a 6 x l 0 - ~  rn Sphere Containing 
8 Weight Percent of A1 in Ni 



WEIGHT FRACTION REMAINING 

Fig. 1-2 Normal Evaporation of 10 Weight Percent Nickel Alloys at 1726K 
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NOTE: At EVAPORATING TIME, TO BE MULTIPLIED 
BY 106 

f WEIGHT FRACTION REMAINING 

1 

E Fig. 1-3 Evaporation Time During Normal Evaporation of 10 Weight Percent 
Nickel Alloys 



500 microseconds, vs 58.3 seconds for Al ,  for the solute concentration to change from 

the initial 1 0  weight percent to 9.5 weight percent. Very smal! droplets o r  thin film? 

having large evaporating ars7as relative to their masses would, therefore, change c ; m -  

positions significantly, s o  rapidly that the change can never be prevented. The behavio- 

of any subsequent solidification may thus bc completely unexpected, and accuratc 

solidification analysis may thus be rendered impossi'3le o r  meaningless unless the exact 

thermal history of the alloy is f i rs t  very accurately measured and an evaporation study 

then undertaken to determine the magnitude of the surface composition changes in thesr: 

alloys. 

Comprehensive (:omputations have been made for nickel alloys containing initial 

solute concentrations of from 2 to 1 0  weight percent (at  2% intervals) of 50 different 

solute elements evaporated at 1726K, the melting point of nickel. For  each solute 

element, the evaporating times were computed for 0.1% decrements in the solute con- 

centrations until the final concentration of 1% was reached. The final molar and weight 

fractions of the alloy remaining at the end of each evaporation period were also computed. 

These computations, designed to furnish a handy reference for future experiment planning, 

a r e  available on request. In our original proposal, we recommended for study nickel 

alloys containing 2 o r  8 weight percent of tin o r  aluminum as the specimen materials for 

our proposed experiment. 

2.3.2 Iron Allovs 

The evaporation behavior of binary iron alloys cori:aining 20 different solute 

elements has also been studied. Table 1-3, listing the equi-evaporative temperatures for 

these 20 different alloy systems, gives the ratias of the solute evaporating rate,  U, at 

. . 1873K. to tbat of the solvent iron, V. At 1873K, 10 of these solute elements evaporate 

i faster than the solvent (the three left columns) and 1 0  slower (the three right columns). 

i-: -1 2 i' Moreover, these ratios vary widely over 18 decades, rrom 4.41 x 1 0  for the slowest 
I. 6 ; ti' evaporating, W, to 3.76 x 1 0  for the fastest evaporating, Cd. Because of this wide 

fi r: variation, and due to the extreme sensitivities of the evaporating surface to unsuspected 
b 

contaminants, predicted or  experimental evaporating results cannot generally be very 

I accurate. 



TABLE 1-3 EQUI-EVAPORATIVE TEMPERATURES 
FOR TWENTY BINARY IRON ALLOYS 

The equi-evaporative temperatures in iron alloys also v.zry widely. Binary iron 

alloys containing Cr, Zr. Mo, and W have no practical equi-2vaporative temperatures. 

One can, therefore, always expect these alloys to change cospositions continuously with 

the evaporating time. 

Table 1-4 shows the effect of evaporating temperature on the U/V ratios for four 

different solute elements Mg, Ca, Mn, and Al.  In the range of 1773K to 2173K and 

beyond, increasing the evaporating temperatures always decreases the U/V ratios. 

This can also be  seen from Table 1-3, as the equi-evaporative temperatures shown for 

these four binary iron alloys are higher than 1873K. at which temperature the four solute 

elements evaporate much faster than the solvent iron. Table 1-4 also shows that, for 

the same temperature variation, the more evaporative the solute element the greater  the 

percentage variation in the U/V ratio. In the case of Mg the U/V ratio decreases by 

about 20 times from 1773Ii 2173K, whereas for A1 the same ratio decreases only by 

less  than three times over the same temperature interval. 

U/V at 
18 73K 

4.412 x 10-l2 

8.210 x lo-' 
1.879 x 

1.930 x 

6.83i x 10 
-5 

3.804 lo-q 
2.254 x 

4.362 x 10-I 

5.238 x lod 
5.897 x loe1 

. 
Solute 

Cd 

Zn 

hIg 

Ca 

Pb 

Mn 

A1 

Cu 

Sn 

C r  
J 

Ts, K 

13,813 

15,883 

19,982 

9,608 

5,249 

21,013 

8,291 

5,886 

2,959 

58.1 

Ts, K 

-69,317 

5, COC 

-11,857 

- + ' I ,  51 7 

9,783 

8,847 

34,923 

4,591 

3,098 

3,309 
I 

U/V at 
1873 K 

3.765 x 1 0  

2.065 x 1 0  - 
9.074 x 10' 

5.503 x 1 0  
4 

3.333 x 1 0  
3 

1.070 x 1 0  

45.65 

12.25 

9.978 

3.158 

Solute 

W 

C 

Mo 

Z r  

B 

V 

Ti  

Co 

Si 

N i 



TABLE 1-4 EFFECT OF SOLUTE ELEMENTS AND EVAPORATING TEMPERATURES 
ON THE VALUES OF U/V (x 1000) IN IRON ALLOYS 

Figure 1-4 shows the effect of solute elements and evaporating temperature, T,  

on the evaporating time t ,  for a given set  of initial and final solute concentrations (i.e., 

m = 0.01 and m = 1 ppm). For given m and m,  the log t versus 1/T curves for these 
0 0 

highly evaporative solute elements a r e  approximately linear and have positive slopes. 

This can be predicted from Eq (11) since, for given m and m, log t i s  linearly related 
0 

to B/T - 0.5 log T, and 0.5 log T i s  small  relative to B/T within the evaporating tem- 

perature range studied. Thus, one can use Fig. 1-4 to determine the value of the ele- 

mental evaporating constant B, o r  heat of evaporation A H  = 4.574 B (Dushman, 1962), 

for the solute elements by plotting log t versus 1/T and measuring the slope of the 

resultant, nearly straight lines. 

r 
Temp (K) 

1773 

1873 

1973 

2073 

21 73 

In Fig. 1-5, the log t versus 1/T relationships also appear nearly linear for all  
-1 -2 -3 -4 

the four different initial concentrations (i. e. , m = 1 0  , 1 0  , 1 0  , and 10  ) of A1 in 
0 

Fe. This can also be seen from Eq (11) and (12). All these nearly straight lines have 

identical slopes, from which the heat of evaporation of pure A1 can be evaluated. 

Figures 1-6 and 1-7 display the effect on the evaporating time, t, of final solute 

concentration, m, and either initial concentration m (in Fig. 1-6) o r  solute elements 
0 

(in Fig. 1-7). 

i 

Solutes 

Figure 1-8 indicates that Mg, Ca, and Mn in Fe alloys are s o  evaporative at  

Mg 

2132.0 

907.4 

421.2 

210.5 

112.1 

Mn 

1.649 

1.070 

0.7261 

0.5110 

0.3719 

Ca 

118.2 

55.03 

27.68 

14.88 

8.466 

A1 

0.06037 

0.04565 

0.03552 

0.02831 

0.02304 



SOLUTE 
n 

EVAP r, K 

Fig. 1-4 Evaporating Times for Different Dilute Iron Alloys to Change 
Concentration from m = 0.01 to m = 1 ppm 

0 

Y I  I IHL 

CONCENTRATIONS 

21 73 1973 1773 

EVAP T, K 

Fig. 1-5 Evaporating Times for Dilute Iron Alloys Containing A1 and 
Starting at Four Different Initial Concentrations, to Reach 
a Final Concentration of m = 1 ppm 
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1 0-2 1 0-4 1 0-6 1 0-8 

FINAL CONC, m 

Fig. 1-6 Effect of Initial and Final Solute Concentrations on the Evaporating 
Times in Dilute Iron Alloys Containing A1 at 1873K 

SOLUTE 

FINAL C0NC.m 

Fig. 1-7 Effect of Solute Elements and Final Concentration on the 
Evaporating Times in Dilute Iron Alloye at 1873 K 
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2 1 o - ~  1 0-6 10-8 
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Fig. 1-8 Evaporation Loss of Dilute Imn Alloys at 1373K as a 
Function of Solute Elements and Final Solute Concentration6 
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1873K that practically all  of these elements a r e  removed by evaporation, without much 

evaporative loss of the solvent Fe atoms. On the other hand, A1 i s  comparatively less  

evaporative, and much of the solvent Fe atoms a re  evaporated off together with Al. To 
7 -9 

achieve a purification factor of 10  (i. e., to m = 1 0  ) from m = 0.01, for example, 
0 

the initial evaporating alloy must lose over 30% of i ts material. 

2.4 ACCURACY OF PREDICTED RESULTS 

To check the validity of our derived equations for normal evaporation of binary 

alloys, we searched the current literature. Several sets  of alloy evaporation data have 

been found that are amenable to normal evaporation analysis. 

2.4.1 The Fe-Ni and Ni-Cr Systems 

An analysis has been made of the data by Obradovic et al. (1969) for Fe-Ni and 

Ni-Cr alloys evaporated at 1873K for different times under various ambient pressures.  

In the 80% Ni-2% C r  case, evaporation started with N = 0.7582 moles of the alloy having 
0 -3 2 an evaporating a r e a  A = 10 m . The solute and solvent evaporating rates  are ,  respec- 

-1 - 2 
tively, U = 3.479 s 1C arid V = 6.386 x 1" mol/m2/sec. In this case the solute, C r  Ni 
Cr,  i s  comparatively highly evaporative relative to the solvent, Ni. Hence, the evapor- 

ating time t given i n  Eq (11) applies, i .  e. , 
1 

(1-m )m 
O + 

m (1-m) (1-m ) (1-m) "-"o 0 I 
where G = -N (I-m )/AU, and m and m a r e  the initial and f i~lal  molar solute con- 

1 0 0 0 

centrations in the alloy. 

Least-square fits of the Obradovic data give nearly constant values of observed 
4 

GI: -1.785, -5.064, aid  -3. OM (x 10  see)  for ambient pressures of 1, 100, and 500 
- 3 

(x 1 0  torrj. respectively. The calculated values of G , though also nearly constant, 1 
are ,  however, one order of magnitude smaller,  indicating surface solute depletion. 

Similar analysis for the 60% Fe-4% Ni alloy evaporated with No = 0.7478 moles and 
-3 2 2 A = 10  m gives UNi = 6.386 x and V = 1.081 x l o d  mol/m /sec. Here, the 

Fe 
solvent Fe i s  much more evaporative than the solute Ni, and Eq (14) applies. The 



values of observed evaporating coefficients G = m N /AV a re  2.469, 1.369, and 
4 

2 0 0  
2 

8.386 (x 10 sec)  for ambient pressures  of 0.133, 13.3, and 66.7 Newtondm , 
respectively. The calculated G 's a r e  again nearly constant but also an order  of 

2 
magnitude smaller  than the observed G 's, again indicating solvent depletion (or  

2 
solute enrichment) a t  the surface. Details of these analyses a r e  given in Appendix A. 

P 

1 .. 
2.4.2 Beryllium Purification 

The kinetics of normal evaporation for beryllium have been quantitatively 
: ,  checked with actual results of beryllium purification during vacuum induction melting. 
r. 
3 Details a r e  given in Appendix B. In these tests by Bunshah and Juntz (1966). beryllium 

- 4 
& - was crucible-free, induction-melted under an ambient pressure of 1.33 x 1 0  

. 4 2 
, Newtodm . The actual temperature of the melt was not known, and the exact evaporating 

-. ra tes  for the beryllium solvent and various solute elements cannot be computed. How- 

ever, because all solute elements (i .e. ,  Fe,  Cr ,  Mn, Ni, Si, Al ,  RIIg, Cu, Zn, and Na) 

and the solvent, Be, were evaporating from the same or common liquid-gas interface 

of a fixed a r ea  for the same length of time, we can compute the values of P, defined as 

the product of the evaporating time, t ,  and solvent evaporating rate,  V (for V B U), o r  
1 

solute evaporating rat.e, U (for U >> V); thus, P = tV o r  tU. Table 1-5 gives thc initial 

concentrations and final concentrations (in ppm) of the various solutes, together with the 

value of P, actual surface concentrations, ratio of actual surface to bulk concentrations, 
l and effective times to reach the final concentrations under the assumption that the eva- 

porating temperature was 1523K. The following conclusions can be drawn from Table 5-1: 

The solute elements can be divided into three groups: Fe, Cr ,  Ni, Si, 

and Cu evaporate much more slowly than Be; Mg, Zn, and Ka evaporate 

much more rapidly than Be; and A1 evaporates at about the same rate as 

Be 

The computed times to reach the final concentrations under normal evapor- 

ation conditions (complete liquid mixing) a r e  fairly constant for the solute 

elements that evaparate niuch slower than Be (i .  e. , Fe, Cr ,  Ni, Si, and 

Cu), being about 4 x 1 0  
4 
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The computed t imes to reach tilt: r ~ n a l  ccncentrations for  the highly 

evaporative Mg, Zn, and Na are also  fairly constant, but about four 

o r d e r s  of magnitude smal le r  

After correction for  limited liquid mixing ( A m ~ n d i x  B), the effective 

t imes to reach the final concentrations are much more  constant, even 

betweer1 the groups of solute elements. In p~ 7 ticular, the highly 

evaporative elements Mg, Zn, and Na have their  resul ts  improved by 

several  o r d e r s  of magnitude 

Limited liquid diffusion must, therefore, be  considered, particularly for 

the highly evaporative elements 

The surface  solute concentrations can be changed by up to six o rders  of 

magnitude s o  that the effective evaporating raLes can be s imilar ly  

changed. 

2.5 NORMAL EVAPORATION VS NORMAL FREEZING 

Normal evaporation and normal freezing (Pfann 1966) are strikingly s imi la r  in 

many respects. Both deal  with idealized transition phenomena between two phases. In 

~ o r m a l  evaporation, the two phases a r e  ei ther vapor and liquid o r  vapor and solid. In 

normal freezing, the two phases a r e  always solid and liquid. In e i ther  case, the interface 

between these two phases moves in accordance with the constraints of mass  transfer,  

heat t ransfer ,  and liberation o r  absorption of the heat of evaporation o r  fusion. Either 

phenomenon is idealized under the three  assumptiol~s tabulated below. 

TABLE 1-6 COMPARISON BETWEEN ASSUMPTIONS IN NORMAL 
EVAPORATIONS AND NORMAL FREEZING 

Normal Evaporation 

Vapor o r  solid: complete vapor removal, i. e., D = m 
v 

Liquid: complete liquid mixing, D = 
1 

Phase Equilibrium: Raoult's Law 

Normal Freezing 

Z e r o  solid diffusion, D = 0 
s 

Complete liquid mixing, D = m 
1 

Phase diagram 



In practice, complete vapor removal in normal evaporation has the same effect 

as no solid diffusion in normal freezing. Both assume that the material  changed into the 

vapor phase (in normal evaporation) o r  solid phase (in normal freezing) is permanently 

and completely lost, and no longer has  anything to  do with the remaining mate1 ~ a l ,  as 

f a r  as m a s s  t ransfer  i s  concerned. Complete liquid mixing i s  assumed in both cases .  

From the phase diagram, the freezing segregation coefficient k can be determined; bas td  

on Raoult's Law, the evaporative segregation coefficient k can be obtained. Eoth segre-  v 
gation coefficients are generally functions of the sol r~te  concentration and phase transition 

temperature, but can be considered constant under certain special  conditions. Specifi- 

cally, in extremely dilute solutions with limited solidifcation range, k is nearly constant; 

while if U e V and m c< 1, k is constant a1 a given evaporation temperature, as in- 
v 

dicated above. 

The value of k in normal freezing generally is within the relatively narrow range 

of to 10. On the other hand, k in normal evaporation of nirkel  alloys at 1726K 
v 

-1 2 9 
va r ies  from 1.38 x 1 0  for  W to over 1 0  frr such highly evaporative solute elements 

as K, Rb, and Cd as shown above. The values of k a r e  thus many o r d c r s  of magnitude 
v 

wider in range than those of k. 

The velocity v of interfacial movement has a much broader range in normal 
-6 - 3 

evaporation than in normal freezing. Normally, v var ies  from 1 0  to 1 0  m/sec, only 

three  o rders  .: magnitude from maximum to minimum. In normal evaporation of nickel 
-20 alloys a t  1726K, on the other hand, v var ies  from 6.74 x 1 0  m/sec  for W to about 

5.0 m/sec  for K and Rb. The spread is almost 20 o r d e r s  of magnitude. 

Alnong the t h r ~ e  assumptions (Table 1-6) in normal evaporation or freezing, the 

one on complete liquid diffusion is  most subject to e r ro r .  Much work has been done 

to include the effect of limited liquid diffusion in normal freezing. The equations of 

T i l l e r  e t  a1 (1953) consider the initial transient state,  the silbsequent steady stale,  and 

the final s tage of solidification, because of solute pile-up in front of the solid-liquid inter- 

face due to limited liquid di f fus i~n.  These equations a r e  not very accurate for  the general  

case (Pohl, 1954). except when k i s  nearly zero. Fortunately, for  the important c a s e  of 

surface  enrichment of t race  impurities of a highly non-volatile impurity in solution, the 



evaporative segregation coefficient at a given evaporation tempereture is k = U/V, 
v 

which is indeed close to zero. Hence, Tiller's equation for limited liquid diffusion can 

be bodily transferred to the normal evaporation study with limited liquid diffusion. 

We thus see that with limited liquid diffusion before the steady state is reached, 

there exists a transient state during which the solute concentration an4 thermophysical 

properties of the surface-enriched layer change constantly in a manner that can be, but 

apparently never has been predicted. 

For the special case of U CCV and m << 1 involved in space e-xperimentat ion, it is  

necessary to know the "characteristic distance" and "decay constant" (across and over 

which the relative solute concentration changes by a factor of e, a s  defined by Tiller 

et a1 (1953)). Such determinations allow us to see how much unavoidable evaporation affects 

solidification during a given test period, o r  indeed to determine if the solidification experi- 

ment is meaningful a r  definitive and not unduly distorted by surface evaporation. 

The characteristic distance is, as defined by Tiller e t  a1 (1953), D /kv, where 
-8 2 

1 
D. i s  the liquid diffusion coefficient (generally about 10  m /sec). This distance for 

I 
-6 

normal freezing thus covers about seven orders of magnitude, from 10  to 10.0 m. 

The characteristic distance for normal evaporatior? has a much broader range, covering 
-1 8 23 

over 41 orders of magnitude and varying from 10 to 10 m. 

2 
The decay constant is, as defined by Tiller et  a1 (1953), D, /kv and for normal 

- 3 7 
freezing thus covers about 10  orders of magnitude, from 10  to 10 sec. The decay 

constant for  normal evaporation also has a much broader range, covering over 71 orders  
- 28 4 3 

of magnitude, from 10 to 10 sec. 

These much greater evaporative segregation effects would almost certainly conceal 

any minor or  subtle zero-gravity effects, especially in the presence of other unknown o r  un- 

controlled effects. Definitive space solidification work should, therefore, be preceded by 

an evaporative compatibility study of the sample materials and associated impurities. In 

fact, evaporation i s  almost certain to be very important o r  s o  overwhelming that the effect 

of zero-gravity or  freezing segregation may be masked or  even reversed. A freely sus- 

pended molten drop in space may, for example, have its surface solute concentration 



t" 
L 7 
+e 

?. .I., 

' <. 

t ,  y- 
ci $ 

," "2 L 
greatly enriched, even a s  much a s  a millionfold by neglected and undetectable trace 

? 

impurities within a fraction of a second of its deployment. We are then dealing at  the 

critical surface layer with a completely new and unanticipated alloy, e. g. , t race impurity 

a. i. indium instead of the original zinc, having entirely different composition, melting point, 
s - - 
*' ?, f : 

1 i "  
surface tension, thermophysical properties, latent heat of fusion, undercooling and e 

r" * - nucleation characteristics, growth morphology, and the like. 

3 . ;  - - These and similar analyses suggest that the normal evaporation equations pre- 
i 

w - . -. - 
> - '  

sented above work surprisingly well for the several alloy systems studied so  far. The . 
t . .  equations generally give results accurate to within an order  of magnitude of the correct - 

? . 1 :  values, perhaps even for highly concentrated solutions (e.g., 20% C r  in Ni o r  40% Ni in 
T . i 

: 8 :  Fe). Such accuracies a r e  sufficient for many evaporation studies. 
C 

. . . . 
: In more crit ical  studies, however, refined evaporation analyses may be needed. 

In particular, the effect of limited diffusion and, hence, surface depletion o r  enrichment 
. . 

of the solute must often be accounted for. This i s  true especially for the highly evaporative 
1 
s .  

solutes such a s  Mg, Zn, and Na in the solvent Be. We already have results that confirm 

this conclusion. Details of these results will be published in Ref. 8 and elsewhere. 

Section 3. ACCELERATIONS DUE TO DIFFERENTIAL EVAPORATION 

. . ; .  In any zero-gravity experiment, it i s  important not to subject the test samples to 

r - r  accelerations due to gravity o r  other forces. Further, the molten samples should not 
i ii 
I 

touch the wall of the test  chamber before solidification. Different ra tes  of evaporation 

t - at  various surface regions of a freely suspended sample do, however, give rise to un- 
: 4 '  - . -  

- I !  
balanced forces and momenta that may produce e r ra t ic  o r  unwanted accelerations and 

? f" undesirable sample impingement onto the test  chamber wall. Such differential evapor&ion 
8 ;  t " -  may result from solute segregation, nozzle de;::r irment, o r  temperature gradic:,~. For  

r 
example, one-sided heating by an electron team, introduces severe P. ,porative segre- 

gat iw and very steep temperature gradients. Previous work ',9 Dr. T. Kassal at 

Grumman Research on water jetting into vacuum ind p.6'- s that differential evaporation 

introduces unpredictable movements that a r e  Ay observed in motion pictures. 

/ 
When planning space experj!r-&ts on material solidification it is, therefore, 



desirable to have qust i ta t ive answers to .J following specific questions: 

What a r e  the jetting forces ~ r l  samples of differcant elemental materials 

under given temperature nonuniformity conditions ? What elements a r e  

stable (i. e., subjected to small  jetting forces) at  their melting points, 

and what elements a r e  unstable ? 

What is the effect of sample size and density on jetting fol'ces ? 

For a given sample material, what a r e  the critical o r  undesirable inl- 

purities, and what a r e  the desirable o r  stabilizing impurities '? 

a What a r e  the equivalent accelerations o r  gravities on the samples under 

specified test conditions ? 

Starting from rest ,  how long does it take for a differentially evaporating 

sample to reach the wall of test chamber of a given size ? 

Whai is the minimum test chamber size o r  maximum degree of super- 

heating for a given sample material and s ize?  

a How should the sample 5e hcitcd and released, and with what equipment? 

3.1 ANALYSIS O F  THE JETTING ACTION 

The above questions can be answered by a simple analysis oi  the jetting action on 

a differentially heated sphere, such a s  i s  shown in Fig. 1-9. The right half of the sphere 

is assumed to have a surface temperature T , which is lower than T the surface 1 2' 
temperature of the left half of the sphere. As a result, the vapor pressure p on the 

2 
left half i s  greater than that (p  ) on the right half. There i s  then a net force f which 

1 
produces an acceleration a. This acceleration causes the sphere (diameter d, density p ) 

to travel a distance s to impact the wall of the test charn5er o r  other nearby objects. 

The jetting force due to differential evaporation i s  (see Appendix C) 





Hence, the acceleration due to the jetting action is: 

The equivalent gravity is then a divided by the gravitational constant g = 9.81 
2 

m/sec , 

And the time t for the jetting sample to travel the distance s before impacting 

the nearhy wall or  object is 

In the abb-re analysis, we assumed zero initial velocity and acceleration; the 

equations a r e  easily corrected for nonzero initial velocity and acceleration. The times 

computed are, therefore, the maximum allowables for perforlriing the experiment or  pro- 

cessing. Note that these times a r e  proportional to p d s  raised to the one-half power. In 

addition, they depend even more critically on AT = T -T and on the evaporation behavior 
2 1 

of the sample material, i. e., on p,-pl. This is because the elemental vapor pressures  - 
vary by over 38 orders  of magnitude a t  the melting point of ni2kel (1726K). and because 

these vapor pressures  a r e  highly temperature sensitive, as previously shown. 

3.2 COMPUTED JETTING ACTION ON SINGLE ELEMENTS 

The 51 metallic elements listed in Table 1-1 have been screened for potential, 
-3 

space-processing sample materials. Here, the sample diameter is  fixed at  6 x 1 0  m, 

while the allowable distance of travel i s  constant at 0.3 m. Further, half of the spherical 

surface is  assumed to be at  T the melting point of the sample material, while the other 
1 ' 

half i s  at T2, being superheated by 5 to 100% of the absolute melting temperature. Com- 

putations show that the allowable times at  5% superheating vary widely from tens of milli- 
9 

seconds to over 10  years  for gallium. Table 1-7 summarizes the data on these highly 

stable sample materials, as compared to nickel. These results further s t r e s s  the 

critical importance of evaporative segregation. 

Figures 1-10 through 1-12 show the jetting characteristics of the top four, o r  most 
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DEGREE OF SUPERHEATING 

-3 
Fig. 1-10 Superheated Vapor Pressure on 6x10 m Metal Spheres, One Side at the 

Absolute Meltkg Point While the Other Side at Specified Degree of 
Superheating 

1-34 



DEGREE OF SUPERHEATING, % 

-3 
~ i g .  1-11 Equivalent Gravity on 6x10 m Metal Spheres, One Side at the Absolute 

Melting Point While the Other Side at Specified Degree of Superheating 
1-35 
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stable elements, i.e., Ga, Sn, In, and La. These figures illustrate the superheated 
-3 

vapor pressure,  equivalent gravity, and time to travel 0.30 m, for a 6.0 x 10 m molten 

metal sphere, heated to i ts  melting point on one side bvit superheated on the other. The 

amount of superheating varies from 5 to 100% at 5% intervals. Figures 1-13 and 1-14 

give s imilar  jetting data, but for nickel and iron samples respectively. 

Thus, the unwanted accelerations due to differential evaporation, while completely 

negligible in many materials, a r e  serious factors to be considered in others, including 

the specified nickel samples in M512 Skylab experiments. Specifically, it takes only 

10 o r  20% superheating on one side of a 6 x lo-' m molten nickel sphere to impact the 

experimental chamber wall 0.3 m away within three or  one seconds, .respectively, of its 

release. Complete solidification in free suspension may, therefore, be very difficult 

under these conditions. 

- 3 
In other words, nol~uniformly heated, 6 x 1 0  m spheres a r e  subjected to equi- 

- 39 -3 
valent gravities of from 2.26 x 10 Kg for gallium to 3.25 x 10 Kg lor magnesium, i f  

the spheres a r e  superheated by only 5% on one side relative to the other side at its 

absolute melting point. From this, we anticipate new types of powerful evaporative con- 

vection currents to be described later. 

Notice that, in both nickel and iron spheres of the specified size, the computed 
*1 

F 
- -$= equivalent gravity exceeds the one-g level if one side is superheated by 35 and 26%, 
;: * '. 

, ?; $ 2  .a .. respectively, relative to the other side at its absolute melting point. Such evaporation 
! 
i F 

E ,, and jetting action is, of course, merely the familiar rocket action. In the performance of 
'3 '. 
t t f  some Skylab experiments, however, such differential jetting can have important and . $ 
F -3 
+ *a, serious implications. The 6 x 10 m spheres in the M512 sphere-forming experiment, - .- 

3;. 
f A- 

for  example, are known to be very unevenly heated by the electron beam from one side, 

to the point of occasional spitting o r  explosion, but remain solid on the other side. Such 

" ,. ..v. 
samples may be subjected to very large, unwanted accelerations (and hence equivalent 

$3 gravities) of unpredictable magnitude, direction, and duration. Unless corrective action 

i? E k is  taken, such as changing the sample material, in-proving the hardware design (now 
IP 

f considered too late), o r  optimized heating procedures, any solidification results may be 

1 F difficult to interpret in terms of zero-gravity effects. 
%+! 

I 



Fig. 1-13 Jetting Action on 6 x l ~ ' ~ r n  Nickel Sphere, One Side at the Absolute 
Melting Point of 1720K while the Other Side at Specified Degree of 
Superheating 
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Fig. 1-14 Jetting Action on 61cl0-~3m Imn Sphere, One Side at the Abmlute 
Melting Point of 18UK while the Other Side at Specified Degree of 
Superheating 

1-39 



Figures 1-15 and 1-16 display the jetting characteristics on partially superheated, 

6 x l o m 3  m spheres of highly volatile materials due to differential evaporation. These 

figures are ,  respectively, for equivalent gravity and time to travel 0.3 rn, for seven 

different volatile elements a t  eight different degrees of superheating from 5 to 100%. 

3.3 COMPUTED JETTING ACTION OF IMPURITIES IN NICKEL 

The undesirable jetting action due to certain evaporating impurities can also be 

replaced by the desirable stabilizing action of other impurities. Specifically, a 
- 3 

6.0 x 16  -m nickel sphere, a t  its melting point of 1726K, may have its normal jettil~g 
-1 5 

action at  5% superheating on one side reduced from 2.15 x g to 7.34 x 1 0  g by 

an enriched surface layer of tungsten, o r  to 6.75 x 10-l4 g by tantalum. These data on 

the stabilizing impurities on nickel a r e  illustrated in Fig. 1-1 7. 

Figures 1-18 to 1-23 show the stabilizing actions of surface layers of the six most 

powerful stabilizers in nickel. These stabilizers, as shown in Fig. 1-17, a r e  W,  Ta, 

Cb, Os, C, and Mo. These figures show, as ordinates, the superheated vapor pressure,  
-3 

equivalent gravity, and time to travel 0.3 m, for a 6 x 10 m molten nlckel sphere. 

This sphere has a surface layer of the specified stabilizing element and is heated to the 

melting point of nickel (1726K) on one side but superheated on the other. The amount of 

superheating in percentage points is  plotted as the abscissa. 

Figures 1-24 and 1-25 give the jetting characteristics on partially superheated, 

6 x m nickel spheres, surface-contaminated with powerful agitators o r  highly 

volatile elements. These figures are, respectively, for equivalent gravity and time to 

travel 0.3 m for several volatile elements a t  different degrees of superheating up to 100%. 

If we compare Fig. 1-18 with Fig. 1-24 o r  1-25 we see  that, on a 6 x l o m 3  m 

nickel sphere superheated above its absolute melting point by 5% on one ~ i d e ,  the equi- 
7 -1 5 

valent gravity varies by 19 orders  of magnitude from 4.87 x 10 for K to 7.34 x 10  

fo r  W. For the same partially superheated nickel sphere, the time to travel 0.3 m varies 
6 

by 10  orders  of magnitude froml.84 x sec (i.e.. 184 usec )  for K to 2.89 x 10  sec 

(i.e., 0.92 yeare) for W surface layer. 
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E Mg. 1-15 Equivalent Gravity on Partially Superheated, 6xl0-~rn Sphere of 
Hi~hly  Volatile Material Due to Differential Evaporation and Jetting 



-3 
Fig. 1-16 rime for a Partially Superheated, 6x10 m Sphere of Highly Volatile 

Material to Travel 0.3m Due to Differential Evaporation and Jetting 
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~ i g .  1-18 Jetting Action on 6 x l 0 ~ ~ r n  Nickel Sphere Containing Surface 
Layer of W 
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F'ig. 1-19 Jetting Action on 6xl0-~rn Nickel Sphere Containing Surface 
Layer of Ta 
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Fig. 1-20 Jetting Action on 6xl0-~rn Nickel Sphere Contdnlng Surface 
Layer of Cb 
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Fig. 1-2 1 Jetting Action on 6x 10 m Nickel Sphere Containing Surface 

Layer of 0s 
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Fig. 1-22 Jetting Action on 6x10 m Nickel Sphere Containing Surface 

Layer of C 
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Fig. 1-23 Jetting Action on 6xl0-~rn Nickel Sphere Containing Surface 
Layer of Mo 
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Fig. 1-24 Equivalent Gravity on 6x10 m Partially Superheated Nickel Sphere 

with Surface Layer of Highly Volatile Element Due to Differential 
Evaporation and Jetting (Sheet 1 of 2) 
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Fig. 1-24 Eqivalent Gravity on 6xl0-~m P a  tially Superheated Nickel Sphere with 
Surface Layer of Highly Volatile Element Due to Differential 
Evaporation and Jetting (Sheet 2 of 2) 
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Fig. 1-25 Time to Travel 0.3m for 6xl0-~rn Partially Superheated Nickel 
Sphere with Surface Layer of Highly Volatile Element Due to 
Differential Evaporation and Jetting (Sheet 1 of 2) 
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Fig. 1-25 Time to Travel O.3m for 6x10 m Partially Superheated Nickel 

,Sphere with Surface Layer of Highly Volatile Element P J ~  to 
Differential Evaporation and Jetting (Sheet 2 of 2) 
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3.4 FLUID DISTURBANCES DUE TO JETTING FROM DIFFERENTIAL EVAPORATION 

Two of the great  advantages of manufacturing in space prt! .:era-gravity conditions i. 

and the complete absence of convection currents  due to the ear th ' s  gravity. With the 

absence of a l l  convection currents ,  localized fluid disturbances, temperfiture differences, 

concentration variations, and complex heat and m a s s  t ransfer  conditions do not exist. 

Solidification can, therefore, be more  easily controlled, and defect-free crys ta ls  a r e  

then readily obtained. 

IIowever, even in ze ro  gravity, localized o r  interfacial fluid flow, moven,e~it, 

instability, o r  other disturbance can st i l l  occur due to surface tensldn gradients resulting 

from temperature o r  concefitration gradients. This phenomenon, generally called the 

Marangoni effect o r  instability (Bikerman 1958, Scriver, S1 Sterling 1960, St t r l ing & 

Scriven 1959) manifests itself in such forms as "interfacial engine", instability, 

twitching, cellular motiqn, Benard's cells ,  and t ea r  drop in a wine glass. 

Another type of fluid disturbance not previously reported may result  * ~ . . ~ m  jetting 

o r  rocket action due to differential evaporation a s  described above. A nonunifnrmlv 

heated liquid drop in space will be non-spherical because both surface tension and jetting 

action a r e  stroligly dependent on temperature. At equilibrium, the interllal pressure  qt' 

the drop is, of course,  constant. The varying jetting pressure  therefole appears as a 

variation in the curvature of the drop so that the algebraic sum of the jetting p ressure  arid 

the internal p ressure  due to silrfacc tension is constant. Since the jetting p ressure  and 

surface tension vary according to entirely different functions of the drop temperature,  

such constancy can be maintained for  only a selected uoint o r  ring on the drop surface. 

The overall shape of the liquid drop must, therefore, be non-spherical. 

Under gravity o r  the equivalent, jettilig action may show up ss local variations in 

the fluid level. Figure 1-26(a) shows the heating characterist ics of L. liquid in 1 con- 

tainer. The instantaneous profi les f o r  the temperature, evaporation ra te ,  je;ting 

pressure ,  surface tension, and surface  curvature are shown. For  a liquid being heated 

in a container, the s ides  a r e  a t  bigher temperatures and, hence, have higher evaporating 

ra tes  and jetting pressure ,  but generally lower surface tension than the center region. 



SURFACE TENSION 

I 

(4 LIQUID BEING HEATED UP (b) LIQUID BEING COOLED 

Fig. 1-26 Heating or Cooling Characteristics of Liquid in a ContRiner 
Under 6.j  ne True or Equivalent Gravity. 
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The liquid surface must therefore convex upward if the jetting pressure is  large. 

Large jetting pressures are often possible, a s  shown previously. Note that the effect 

of lowering surface tension with temperature partly compensates for that of the jetting 

action; the liquid surface i s  more planar than if surface tension were absent. Similarly, 

Fig. 1-26(b) shows the cooling characteristics of the same liquid in the same container. 

Jetting action may also introduce a new type of powerful convection current. 

The surface of liquid drop i s  usually not clean. Certain spots o r  regions S on the surface 

may be contaminated with slow-evaporating material (Fig. 1-27(a)). These spots o r  

regions may be oxidized into relatively non-evaporating oxides. Even under uniform 

heating conditions, such a drop may be evaporating nonuniformly over its surface. 

Localized, differential evaporation o r  jetting forces may then develop to supply the 

necessary mechanical energy for initiating o r  maintaiaing convection currents, a s  

shown in the Figure. 

Figure 1-27(b) shows a similar, uniformly heated liquid drop that i s  surface- 

contaminated with highly-evaporative material 2t certain spots o r  regions S, resulting in 

higher jetting pressures p, zt S compared to neighboring regions. Such differential 
A 

jetting forces n. *v, again, initiate powerful convection currents. It has been shown by 

Prof. Reid of MIT (1971) that even a few atomic layers of selected materials can increase 

the local evaporating rates  by orders  of magnitudes for sustained periods of time. 

Note that tnese convection currents, resulting from difzerential evaporation, a r e  

completely different in origin and characteristics from those induced by differential 

surface tension (Msrangoni effect). In fact, the two types of convection currents often 

have counteracting effects, one tending to compensate for o r  cancel the other. Also, they 

differ from gravitational convection currents. Gravitational convection currents a r e  

generally very massive, extending deep into t?e body of the liquid. Convection currents 

due to differential surface tension, on the other hand, are b-- nature surface limited. 

The new convection currents induced ') jetting due to differential evaporation extend to a 

degree intermediate between the o~:,el two types of convection currents. Solidification 

behavior predictions of a specified system based on results on one type of convection 

current may, therefore, not be valid when applied to other types of co~vect ion currents. 



(a) LOCALIZED OXIDE CONTAMINATION 

(b) LOCALIZED CONTAMINATION BY HIGHLY VOLATILE MATERIALS 

Fig. 1-2 7 Convection Currents Induced by Differential Evaporation 
and Jetting 
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Section 4. EQUI-EVAPORATIVE TEMPERATURES AND THEIR APPLICATIONS 

The normal evaporation techniques presented above give results accurate within 
is ', 
5 : 

an order  of magnitude of the correct values, at least for the several systems studied. 
I, 9 .  

More refined methods, including those accounting for the limited liquid diffusion in the 

1 .  .. evaporating source, should be considered, a s  evidenced by the great improvement in the 

predicted results in the purification of beryllium containing such highly evaporative 

solutes as Mg, Zn, and Na. During evaporation, not only the solute concentration, but 

also the shape, size, and evaporating a r ea  of the evaporating source may be constantly 
-3 

changing. Figure 1-1 clearly shows the normal evaporation behavior of a 6 x 10 m 

sphere containing 8 weight percent of aluminum in nickel. 

In the most general case, we consider steady-state and transient-state evaporation 

with constant changes in solute concentration, shape, and s ize  of the evaporating source. 

The liquid diffusion i s  usually far  from complete, and Raoultfs Law of ideal solution may 

not be  valid. Not only mass diffusion, but also heat transfer, fluid dynamics, and other 

related phenomena must be dealt with. 

4.1 EQUI-EVAPORATIVE TEMPERATURES IN ALLOY SYSTEMS 

The evaporation of alloy samples likely to be met in space processing (zone 

melting, crystal growth, thin film formation or ,  in general, controlled solidification and 

heat treatment) i s  complicated. Fortunately, for a given solvent and solute there exists 

a unique equi-evaporative temperature a t  which the solvent and solute a r e  equally evapor- 

ative, i. e., U = V. Hence, at this unique temperature the alloy remains constant in 

composition, independent of the initial solute concentration and sample shape o r  size. 

This temperature, which can be computed from Eq (21), may be non-existent because 

it i s  negative o r  it may be too high o r  too low to be practical. 
i 
1 However, for many binary o r  even ternary alloy systems, the equi-evaporative 
I 
i temperatures do exist and are practical. A computer search has been conducted among 

I the 2550 binary combinations (i. e., 51 solvents x 50 solutes) and of 62,475 (i. e., 

51 solvents x 50 x 49/2 f i rs t  and second solutes) ternary combinations, of the 51 metallic 

elements listed in Table 1-1. By "practical" we mean that the equi-evaporative 



temperature is  no higher than 200% of the absolute melting point of the solvent. At each 

such equi-evaporative temperature, the relevant binary phase diagram in Hansen (1958) 

was consulted to determine the range of solute concentrations for which the alloy is  in 

liquid form. 

The results of these computer searches a r e  summarized in Tables 1-8, 1-9, and 

1-1 0. Table 1-8 gives the equi-evaporative temperatures for binary alloy systems con- 

taining liquid phases. Table 1-9 l ists the same temperatures, but for other binary alloy 

systems which either contain no liquid phases at these unique temperatures o r  have ill- 

defined phase diagrams according to Hansen (1958). Table 1-10 gives the equi-evaporative 

temperatures for ternary alloy systems. With the exception of alloys of carbon, which 

generally have ill-defined phase diagrams, all  other alloys having practical equi- 

evaporative temperatures a r e  listed in these tables. 

Consider, for example, Table 1-8. The Ag-Ga system has a equi-evaporative 
0 

temperature of 1245.8K o r  972.7 C. This unique temperature is  101% of the absolute 

melting point of Ag (1233.9 K)  but over 411% of the absolute melting point of Ga (302.9 K 
0 

o r  29.81 C. Hence, Ag alloys containing Ga having a "practical" equi-evaporative 

temperature of 1246K a r e  listed in Table 1-8; but Ga alloys containing Ag have an 

"impractically" high equi-evaporative temperature (also at 1246K) and a r e  not listed. 



T
A

B
L

E
 1
-8
 

E
Q

U
I-

E
V

A
P

O
R

A
T

IV
E

 
T

E
M

P
E

R
A

T
U

R
E

S
 F

O
R

 T
W

O
-C

O
M

P
O

N
E

N
T

 
SY

ST
E

M
S 

C
O

N
T

A
IN

IN
G

 L
IQ

U
ID

 P
H

A
SE

S 

P
ag

e 
N

o.
 

in
 H

an
se

n
's

 

1
3

5
 

7
 3
 

19
.1

: 

1
9

6
 

7 
3
 

4
 2

9 

4
2

2
 

8
5

0
 

4
 2!

j 

13
!i 

A
 

L
iq

ui
d 

C
on

ce
n

tr
at

io
n

 R
an

ge
 

0
-1

.0
0

 

>
 .2

6
 

c
 .

1
3

 

.0
3-

. 
16

, 
.3

0-
. 

32
, 

-3
7

-.
 3

8,
 

>
 .7

2
 

<
 .8

9
 

>
. 8

7
 

>
 .9

5
 

0
-1

.0
0

 

c
 .

5
6

 

<
 .

0
5

 

>
 .

2
6

 

%
 M

el
ti

n
g 

P
oi

n
t 

1
 0
1

 

94
 

1
 24

 

99
 

1
3

6
 

75
 

79
 

1
9

9
 

78
 

1
2

6
 

1
7

3
 

r 

S
ol

ve
n

t 

A
g

 

A
1 

A
u 

B
e 

C
d 

M
n
 

N
a
 

Sn
 

M
el

ti
n

g 
P

oi
n

t,
 K

 

96
0.

8 

66
0.

0 

10
63

. 

1
2

8
4

.0
 

32
1.

0 

1
 24

4 97
.8

 

2
3

1
.9

 

0
 

S
ol

u
te

 T
s 
, 

C
 

G
a
 1

2
4

6
 

Sn
 

8
6

8
.7

 

B
e 

1
2

5
7

 

C
e 

1
3

1
0

 

C
r 

1
8

0
7

 

A
1 

1
1

5
7

 

N
a 

46
4.

3 

K
 

1
1

8
0

 

In
 

1
1

7
8

 

C
d 

4
6

4
 

A
1 

8
6

8
.7

 



TABLE 1-9 EQUI-EVAPORATIVE TEMPERATURES FOR 
OTHER TWO-COMPONENT SYSTEMS 

Solute and TsK 

Sc 2670 
La 4333; Rh 3069; Pt 2003; Th 970.7; \' 2933 
TI  704.8 
Ga 2519; In 2994; Sn 946.8 
Sb2 671.3; S r  1633 
Mo 3489; 0s 3634; Z r  4980 
Cs  1139; Rb 1179 
Au 1310; Cu 1940; Ge 1097; Sc 985.0; Sn 1852 
Au 3293; Ge 2975; Pd 1335; Si 1050; Sn 3164 
Al 4030; Au 1807; Cu 2951; Ga 3865; Ge 1513; 
In 3996; Pb 4166; Sc 1477; Sn 2291 
Au 2902; Ge 2465; Ni 3309; Pd 324.8; Sc 3091; 
Ei  3099; Sn 2959 
Ce 1097; C r  1513; Sc 1617 
Mo 297.1; Ru 4513; Th 4722; U 5188; Z r  1678 
Si 306.7; T i  2104; Y 1208 
S r  288.9 

Solvent 

Au 
B 
Ba 
Be 
Ca 
Cb 
Cd 
Ce 
Co 
C r  

Fe 

Ge 
I r 
La 
Li 

Mg 923.1 C s  1834 
Mn 1517 Pb 2430 
Mo 2893 Cb 3489; IR 297.1; 0s 3414; Ru 1596 
N i 1726 Au 3110; Fe 3309; Ge 2798; Pd 1137; Sc 3178; 

Si 2614; Sn 3111 
0s 3318 Cb 3634; Mo 3414; Z r  6125 
Pd 1825 Co 1335; F e  324.7; Ni 1137; Si 10470; Y 3277 
Pt 2042 B 2003; Ru 801.5; U 4038 
Rh 2233 B 3069; Pt 801.5; U 2878 
Ru 2583 I r  4513; Mo 1596; Th 4619; V 5005; Z r  3085 
Sb 903.6 Ca 671.3 
Sc 1811 Au 2670; Ce 985.0; C r  1.177; Fe  3091; Ge 1617; 

Ni 3178; Si 3095; Sn 2912 
Si 1685 Au 2969; Co 1010; Fe 3099; Ge 2689; La 306.7; 

Ni 2614; Pd 1293; Sc 2095; Sn 2987 
Ln 505.0 Be 946.8 
Sr 1043 Ca 1633; Li 288.9 
Th 2027 P1 970.7 
Ti 1940 La 2104 
TI 576.1 Ba 704.8 
U 1403 V 1328 
V 2193 La 2885; Pd 4143; U 1328 
Y 1793 La 1208; Pd 3277 
Z r  2133 I r  1678; Ru 3084 

Melting 
Point, K 

1336 
2573 
983.1 

1557 
1116 
2741 
594.1 

1077 
1765 
21 73 

1809 

121 0 
2716 
1193 
453.1 



TABLE 1-10 EQUI-EVAPORATIVE TEMPERATURES FOR 
THREE-COMPONENT SYSTEMS 

4.2 SIGNIFICANCE OF THE EQUI-EVAPORATIVE TEMPERATURE 

The binary o r  ternary alloy systems presented in Tables 1-8 through 1-10 a r e  
, 

ideal, a t  their respective unique temperatures, for the study of heat transfer,  sphere 

detachment, deformation and oscillation, bubble formation and movement inside the 

liquid, and the like, since their solute concentration is  constant regardless of the initial 

concentration and sample shape o r  size. In addition, by changing the initial solute con- 

centration we can isolate and study the effect on these phenomena of such concentration- 

related properties a s  surface tension. In a l l  such experiments, the solute concentration 

will remain constant throughout the entire sample during the experiment. There i s  no 

concentration nonuniformity and no surface concentration gradient. The initial, boundary, 

intermediate, and final conditions of the sample composition a r e  completely defined, 

known, and stable. 

Liquid 
Concentration 

Range 

0-1.00 

At these unique temperatures, we can accurately determine the equilibrium 

liquid and solid solute concentrations for use, for example, as reference points on 

conventional phase diagrams. These solute concentrations can be obtained with an 

accuracy completely independent of the sample shape and size, and even independent of 

the heating r a t s  if the sample is  equilibrated at  the equi-evaporative temperature. The 

. 

Solvent 

Cd 

Si 

Ni 

G 

Solute 

K 

Rb 

Sc 

Fe 

Au 

Sn 

Melting 
Point, K 

321.0 

1412.0 

1453.0 

Ts,  K 

1180 

1179 

3095 

3099 

3010 

3011 



resultant sample will display a sharp solid-liquid interface. There will be a com- 

pletely uniform liquid composition, and a completely uniform but different composition 

in the solid. No concentration gradients exist in either the liquid o r  the solid. Any 

portion, large o r  small, of thc liquid o r  solid is  perfectly representative of the same 

phase and resolution of the analytic instrument o r  technique becomes immaterial. 

We can, therefore, determine these concentrations by Auger, electron probing, 

spectroanalysis, chemical analysis, etc., with almost the same precision. This is  

true even if the alloy cmtains one o r  more highly volatile components. The segregation 

coefficient k at this unique temperature can, therefore, also be accurately determined. 

We can also propose the following unique, isothermal solidification experiment. 

A liquid alloy sphere containing 0.75 mole fraction of till in aluminum is evaporated at  

slightly below the equi-evaporative temperature, say at 863K. The solvent aluminum 

now evaporates more slowly than solute tin. This condition results in a solute enrich- 

ment in the remaining liquid, Upon reaching 0.74 mole fraction of tin, the alloy 

solidifies according to the phase diagram. The solidification proceeds from the sur-  

face, but remains at the constant temperature of 863K. The evaporating time can be 

calculated by means of our normal evaporation equations presented in a previous section 

of this report, after the shape and size of the evaporating sphere a r e  specified. By 

controlling the evaporati.on temperature one can control the rate  of solute enrichment 

which, together with mass diffusion constraints, allows us to control the rate  of solidi- 

fication. When the evaporation o r  isothermal solidification temperature is  very close 

to the equi-evaporative temperature of 868.7K, one gets a true picture of solute 

fiegregation due to solidification rather than the combined effects of solidification and 

unknown amount of evaporation, as is  almost always the case in current studies. 

Further, in space, where surface tension is  important but gravitational convection i s  

negligible, one can s ta r t  with a homogeneous sphere and freeze it isothermally from the 

spherical surface at a rate so slow that unique cellular and granular structures can be 
i 

obtained. In addition, one can locally control the temperature of the molten sphere by 

means of a heated o r  cooled sting, o r  by means of concentrated electron o r  optical 

energy, s o  as to initiate single crystal  growth in the manner of Walter and Snyder (1971). 



Section 5. SONSTITUTIONAL MELTING AND SOLIDIFICATION DUE TO EVAPORATION 

Consider aluminum and tin. A1 melts at 933.3K and Sn at 505. OK (see Table 1-1). 

This binary system has a equi-evaporative temperature of 868.7K (Table 1-8). which lies 

between the melting points of the two components. At this unique temperature T (line 
S 

AB in Fig. 1-28), both elements a r e  evaporating et exactly the same rate  and no com- 

positional change takes place. At a temperature T > Ts, A1 evaporates faster than Sn, 

and (surface) depletion of A1 and enrichment of Sn occur. At a T <Ts, the reverse i s  

true and A1 enrichment and Sn depletion occur. 

According to the A1-Sn phase diagram (Hansen 1958), the binary alloy is liquid 

if it co*i!~ins more than 0.26 mole fraction of Sn at T (point D). Let us select a liquid 
S 

composition below line AB and somewhat to the right of point D, e .  g., 0.265 mole 

fraction of Sn at 868.1K (point G). Since at 868.1K A1 i s  evaporating slower than Sn, the 

alloy composition will constantly increase in Al, and must move isothermally toward the 

left o r  Al-rich side. Upon reaching the liquidus on the Al-rich side of the phase dia- 

gram, i.e., point H, the alloy solidifies, f i rs t  on the surface but progressively toward 

the center of the sample because of mass diffusion. We thus achieve a new isothermal 

solidification of non-eutectic, binary alloy, because of surface cor~ctitutional o r  com- 

positional changes through evaporation. Note that isothermal solidific3tion of alloys 

(not pure metals) can only occur at the eutectic temperatur?. Our constitutional solidi- 

fication experiment, is, however, not limited to the eutectic composition. 

If point G is sufficie~itly below line AB, we carr heat up the molten sample G below 

the line AB to achieve A 1  enrichment and, hence, solidification on heating. 

Similarly, the solid composition hl can be constitutionally melted at a constant 

temperature (along line MN) o r  at  a decreasing temperature (along line MP). 

All four constitutional phase change phenomena, i. e. ,  isothermal melting 

(path 1). melting on cooling (path 2). isothermal solidification (path 3). and solidification 

on heating (path 4). of non-eutectic, binary (ternary, o r  other multi-component) alloy 

systems appear to have never been reported. Yet these phenomena may well occur in 

space expcjrimectation. In fact, these ttanomalies" may greatly confuse the experimenter 
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if an evaporation analysis i s  not f i rs t  performed for the particular alloy system within 

the temperature range of the experiment. 

For  Au-Ce alloys, Table 1-8 gives equi-evaporative temperature a s  T = 1310K s 
(line AB in Fig. 1-29), which is intermediate between the melting points of the two 

componenta. At a temperature T < T Ce evaporates slower than Au, while a t  a 
s 

temperature T > T Ce evaporates faster than Au. 
8 

Aii interesting point about the Au-Ce system is that, at T = T the alloy i s  s' 
liquid within the following several ranges of Ce atomic concentration: 0.03-0.16, 

0.30-0.32, 0.374.38, and 0.72 (Hansen 1958). 

An alloy starting at  point F and isothermally heated a t  1323~ 'w i l l  be initially 

liquid. The alloy will, however, lose more Ce than Au at this temperature, and its 

composition will therefore move along line E F  toward the Au-rich side. Solid crystals 

of CeAu will separate out on the surface when the composition reaches point G. Con- 

tinued heating at the temperature of 1323K will cause more intensified surface depletion 

of Ce, i.e., the alloy composition will further shift toward the left, on the surface, 

through evaporative segregation, but inside the sample through solid and liquid diffusions. 

Eventually, the alloy will have four solid phases representing, in order,  the compositions 

CeAu, CeAu CeAu and nearly pure Au. The compositions of the phase bomdaries can 
2' 3' 

be read off Fig. 1-29 at  the intersection points of line E F  with the several liquidus lines. 

If the sample i s  in the form of a freely suspended drop o r  ephere in space, it will have 

seven, alternately liquid and solid, concentric spherical shelle. Such a structure i s  

novel and unique, but may be used to determine solid and liquid diffusivities and phase 

boundaries. Since Au has a d e n ~ i t y  of 19.3, compared to 6.75 of Ce, we may use this 

composite structure to study convection currents o r  other fluid movements due to gravity 

in spherical shell geometries. 



Fig. 1-29 Evaporation, Conetitutional Melting, and SoUdification Experiment 
on Au-Ce Alloys 
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Section 6. APPLICATIONS OF EVAPORATION TO SPACE MANUFACTURING 

In summary, surface evaporation of materials has the following impor ,ant nppli- 

cations o r  effects relative to space manufacturing of materials. 

Data have been presented to show, for example, how the solute A1 in a uniformly 
-3 

heated, 6.0 x 10 -m sphere containing 8 percent by weight of A 1  in Ni evapo-ates. The 

losses of material, mostly A1 at, and the times to reach, various weight fractions and 

surface concentrations a r e  given. The p~eferent ia l  evaporation of A 1  makes it difficult to 

control sample we~ght, size, and compcsition. The A1 vapor coats, the vacuurn chamber 

walls and, more seriously, the nearby samples in the Skylab experiments. Worst of all, 

the electron beam source for heating these samples may be contbminated to the point of 

e r ra t ic  electron emision and loss of control. As a result of theue disadvantages, which 

were partly confirmed by nctual simulation mils, the Al-Ni alloy was droppci as a 

sample material for the M512 experiment. 

6.2 EVAPORATIVE PURIFICATION 

Evaporative purification would benefit the following processes: floating zone 

melting; single crystal growth; thin film growth; and preparation of materials standards. 

As shown, we presented quantitative data on the purification of nickel alloys with aluminum 

as a solute. We further described, in some detail, tlre evaporative purification behaviors 

of nickel-iron and nickel-chromium alloys. The purification of beryllium containing nine 

impurities in the ppm range was separately treated. Three reports have been published 

on theue data and the fieceesary predictive equations, and submitted for outside publi- 

cation. A paper on e,~a&oration prepared under the contract was also presented a t  the 

AACG at  Princeton 'Jniversity in July, 1972. 

Not fully appreciatod, it appears, i s  the fact that evaporative purification i s  

relative, in terms of s,meds .and results. It i s  also a two-edged sword. Thus, while 

with some elements evaporating faster  than the solvent we have evaporative purification, 

with other elements evaporating slower than the solvent we have evaporative (surface) 

contamination o r  enr~chment.  A freely suspended molten drop in space may, io r  



" " 
* h:' 

example, have it8 surface solute coilcentration enriched a thousandfold o r  a millionfold 
.a ,.- 

by neglected and undetectable t race impurities within a fraction of a second of its 

deployment. From there on, evaporative purification may be completely negligible, 
;f':. 
-. < for  any practicei length of time. Furthc r, evaporative purification o r  (surface) con- * : ,;. 

3 .  

t it; 
.'+ I tamination can be s o  fast as to be unavoidable, o r  so  slow a s  to be practically non- 

rj a:. 
I*. *'., exis tent. *.-, 

6.3 "ANOMALOUS" MELTING AND SOLIDlFICATION 
. . 
.m 'b 

i ;:.% 

Because of evaporative segregation, anomalous "constitutional" o r  evaporative 
3. 

?. F,? melting (on cooling) and solidification (on heating) cat, occur, a s  shtrwl~ above. W e  have, 

therefore, pointed out that any sclidification stddy, particularly on nucleat io~,  must be 
. - 

preceded by an evaporation compatibility study. We have also suggested unique m ~ d  defini- 

': I tive solidification experiments that circumvent o r  minimize the evaporation effects. 
k. fv 

c 6.4 DIFFERENTIAL ZVAPORATION .ND JETTING ACTIOK 

Different rates of evaporation at various surface regions, such a s  thosc resulting 
.= from nozzle detachment, temperature gradient, c r  surface co.~~amination, give r i se  to 
i F 

unbalanced forces and :r .~menta that may produce errat ic  o r  unwanted accelerations. 

Very large "equi-valent gravities" may be produced. Another effect of suc :~  jetting 

actions may be the formation of powerful convection currents with entirely new charac- 

, 
terist ics that can not be directly correlated with those of other convection currents. 

6.5 SURFACE COOLING 

Evaporation requires the ab~orp t ion  of the heat of evaporation. Surface cooling 

therefore results. For  nickel at its melting point of 1726K, the evaporative surface 

cooling compnent  is about four orders  of magnitude smaller than the radiative cooling 

component and is, therefore, prohably negligible. For  ;ow-melting materials, particu- 

larly those having high heat of evaporation, the evaporative cooling component way be 

very important. Work by Dr. Thc aas T. Kassal of the Grumman Research Department 

with water o r  brine s t reams jetting into vacuum demonstrates the irv~prr:ance of surface 

cooling in ice formation. 



6.6 MATERIALS STANDARDS 

Properly controlled evaporation, particularly in space, allows us to obtain 

material purity or evaporation standards, thermal properties, and even basic thermo- 

dynamic constants. 



PART I1 

FREEZING SEGREGATION 

This section on freezing segregation represents, in part, a review paper the 

principal investigator has been asked to prepare for inclusion in "Advances in Materials 

Science. " While this work was not done under NASA support, it i s  included for the sake 

of completeness and because of i ts  relevancy. 

Section 1. INTRODUCTION 

In this section, we will discuss the normal freezing process, and i ts  application to  

steady-state solidification in the Ni-Sn system. 

In the f i rs t  part of this section, the normal freezing process i s  described in some 

detail. The assumptions, Its industrial application and importance, the normal freezing 

differential equation and its solution for the various cases  a r e  given. The meaning of the 

segregatiol coefficient k i s  then discussed. The best value of k and the e r r o r s  involved 

in assuming constant k for various cases a r e  studied. Finally, numerical computation 

of the normal freezing process i s  exemplified. 

The formation of spirals o r  screw dislocations and other defects has always received 

great attention because these defezts make all materials very weak compared to their  

theoretical potentials. During this contract, new spiral  growth observations on barium 

st itium niobates grown under controlled coriditions were made. These observations 

carnot be e q ! ~ i r ~ a J  by the classical core-first growth theory (or BCF modzl) A new 

mechanism was therefore developed to explain them. We believe that knowledge uf the 

formation mechanism of these and other defects will enable us to control o r  eliminate 

them in space manufacturing and other operations. Details of this new mechanism i s  

given in Appeildix F. 



Steady-state solidification i s  related to the important process of single crystal  

growth. In particular, the crit ical  temperature gradient must be accurately determined 

in order  to achieve interfacial planarity and single crystal  growth. We used a non- 

constant k approach to slildy the steady-state growth of Ni-Sn alloys. Our results show 

that assuming constmt k may introduce intolerable e r r o r s  in predicting solidification 

behavior in general and single crystal  growth in particular. 

Section 2. THE NORMAL FREEZING PROCESS 

In normal freezing, we assume that the liquid i s  completely mixed, that no atomic 

diffusion occurs in the solid, and that the compo..itions of the freezing solid and liquid, 

respectively, follow the solidus and liquidus curves of the constitutional diagram. 

Since the liquid i s  completely mixed, there is ,  effectively, infinite diffusion in the 

liquid. The liquid is,  therefore, always homogeneous. Solute pile-up in front of the 

liquid-solid interface i s  not possible and solute concentration at  this interface is, therefore, 

the minimum possible. The equilibrium solute concentration in the freezing solid i s  also 

minimal. Thus, the interface acts a s  if it were an efficient atomic filter, allowing pure 

solvent atoms to freeze out together with Lhe minimum amount of solute atoms while 

keeping the maximum amount of solute atoms in the remaining liquid (for the case where 

the segregation coefficient i s  less  than 1). Thus, normal freezing i s  the most efficient 

purifying o r  segregating process, a s  far  a s  separating solute and solvent atoms in the 

liquid (according to the constitutional diagram) i s  concerned. 

In contrast to  i -finite liquid diffusion, the solid diffusion is zero during normal 

freezing. Thus, all  the (solvent and solute) atoms stay exactly where they first  freeze 

and remain completely and forever immobilized. Justifications of these assumptions, 

a s  well a s  additional comments and implications, will be more fully described. 

Normal freezing i s  a useful and important ideal limiting case,  a s  is infinitely rapid 

quench o r  splat cooling. In the rapid freezing process, time i s  not allowed for any solid 

and liquid diffusioii, o r  even equilibration, according to the constitutional diagram. The 

effective solid and liquid diffusion constants a r e  thus zero. The solute and solvent atoms 

a r e  instantly frozen, in situ, from thc: melt; and the constitutional diagram i s  completely 



irrelevant. There is  also no solvent purification o r  solute segregation. In practice, when 

the characteristics distance d , defined as the liquid diffusion constant D diipided by the 
C 1 

growth rate v, falls appreciably under the resolution limit of the detecting instrument, the 

frozen material appears to be homogeneous and the freezing process is  practically identical 
-4 2 ,  

to that of an infinitely rapid quench. Since D i s  generally about 10 cm ,. sec,  a growth 
1 

rate greater than 10 cm/sec from a severe quench yields a characteristic distance of 

d = D /Kv = 1 bm. Such a frozen material would thus appear homogeneous under the 
c 1 

electron microprobe, which has a resolution of about 1 pm. 

Another useful and limiting freezing process i s  equilibrium freezing according to 

the level rule. Here, both the liquid and solid a r e  homogeneous, and the liquid-solid 

interface i s  perfectly permeable to the solute and sol\.ent atoms. At all times, the liquid 

and solid a r e  in equilibrium according to the ccnstitutional diagram, and unique, 

"equilibrium segregation" results obtained. 

Any actual freezing results must fall within these maximum segregation, no 

segregation, and equilibrium segregation limits. For  some alloys systems, the limits 

between maximum and equilibrium segregation results may be only n few percent apart 

(Li, 1966). Further, the relative proximity of practical freezing results to either of these 

limits can often be at least qualitatively predicted bv a study of the freezing conditions. 

Among the three methods, normal freezing i s  generally the most important since 

it gives the maximum solvent purification o r  solute segregation, the purest possible 

single crystals, and the most defect-free devices o r  structures since many defects a r e  

often associated with segregated impurities. Also, it is particularly valuable in the pre- 

paration of many material specifications which call for precisely these limiting case con- 

ditions and require the maximum initial solute content, the maximum defect size of a 

given type, the maximum grain boundary thickness for grains of a given size,  and the like. 

Normal freezing often does not represent the true freezing conditions. This i s  

particularly true in dendritic growth when the growth velocity i s  high and solid diffusion i s  

negligible (normal freezinq assumption 2) but liquid diffusion is  not t ,~mp!ete (normal 

freezing assumption 1). With single crystal growth, the grouth speed is  often orders  of 



magnitude lower, solid diffusion is sti l l  negligible, and the liquid diffusion conditions a r e  

more nearly normal. In addition, if the melt i s  mechanically o r  induction stirred, the 

melt may be indeed nearly homogeneous and normal freezing conditions a r e  realized. 

Even a lack of normality does not detract from the usefulness of the normal freezing 

methodology. This is partly because actual freezing conditions a re  more o r  less normal. 

The departure f rom normality can be predicted and actually evaluated, as  will be shown. 

Further, normal freezing gives limiting results which a r e  useful for writing materials 

specificr:ions. As  will be shown, normal freezing conditions give, at each step during 

the freezing process, the maximum crystal  purity possible (for the usual case where k < 1). 

Thus, normal freezing calculations dew us to prescribe the maximum initial impurity 

concentration to achieve a given minimum degree of purity in the final product, a given 

thickness of grain o r  cell boundary thickness, o r  even given mechanical properties such a s  

creep and ductile-to-brittle transition temperature. In addition, abnormal conditions 

such as limited liquid diffusion and loss of materials through surface evaporation o r  

chemical reaction can be accounted for, as  will be shown. 

2 .1  NORMAL FREEZING AS USED IN THE SEMICONDUCTOR INDUSTRY 

Normal freezing techniques has been successfully used in the semiconductor 

industry and a r e  indispensible in such a reas  a s  material purification, single crystal  

growth, dopant control, diode formation, and liquid epitaxy. Here, the conditions dis- 

cussed 1.elaw a r e  most favorable for the use of these techniques. 

The most common germanium and silicon materials a r e  very pure. They generally 

cox.tain only p p ~  o r  ppb of impurities and are,  therefore, orders  of magnitude purer  than 

most other pure materials. We a re  thus dealing with extremely dilute, simple o r  ideal 

solutions. 

There is a crit ical  need for control, at microscopic distances, of absolute depant 
18 15 

levels to ppm (- 10 /cc) o r  ppb (- 10 /cc). Even the dopant concentration grzdients at 

these extremely low concentration levels and small  distances a r e  critical. In fact, even 

ppb of wanted o r  urwanted impurities can radically change the characteristics of the 

resultant semiconductor devices. 



Only a portion, often a small portion, of the solidifjed material i s  used; and the 

solidification range of interest i s  often exceedingly narrow. In the growth of single crystal 

of pure germanium containing 100 ppm of antimony in the melt, for example, the growth 
0 0 

starts at 1209.10K o r  935.98 C (k1209.10K = 0.276), and ends at 1208.12K o r  935 C 

(k1208. 1 2 ~  
= 0.27ti), and over 98.0% of the melt by weight (representing more than the 

material of interest) is grown (Li, 1966). The liquidus and solidus curves of interest can 

be represented by two tiny straight lines extending over solute concentration ranges of only 
0 

4,660 and 130 ppm, respectively, over a temperature interval of 1 K. The segregation is  

constant at 0.276 to within the third decimal place. Again, in the growth of a germanium 

alloy diode with a 50-micron indium sphere, only the first  0.1-micron linear distance 

(representing less than 0.5% by weight solidified) is critical in the formation of the pn 

junction (Li, 1966). Here, the useful solidified portion is extremely small, as  is the 

solidification temperature range of interest. The segregation constant k is, therefore, 

again constant. Pfann's constant-k, normal freezing equation (Pfann, 1952) thus finds its 

ideal application. 

Most germanium and silicon alloys have extremely low solute, solubility limits in 

the solid. According to the constitutional diagrams (Hansen, 1958), germanium alloys 

containing Ag, Al, Au, Cd, Co, Cu, Fe, In, Mg, Mn, Ni, Pb, Sn, Te, TI, and Zn, and 

silicon alloys containing Ag, Al, As, Au, Ca, Ce, Co, Cr ,  Cu, Fe, In, Mg, Mn, Nb, 

Ni, Pd, Pt, Sb, Sn, Ti, and Zr, have invisible solidus lines. Only germanium alloys 

containing As, Bi, Ga, and Sb, and silicon alloys containing U, have some visible solidus 

lines that a re  very close to the vertical temperature axes. 

The segregation coefficients for the above germanium and silicon alloys are very 

small, being close to zero. Also, the solute material frozen in the solid is negligible, 

and does not appreciably affect the fraction solidified. It is therefore possible to con- 

sider multiple, non-interacting dopants in the same crystal for the determination of the 

pn junction depth. Extending this app~oach indiscriminately would be misleading o r  

meaningless. Unfortunately, this has been done. 



2.2 EXAMPLES OF CONSTITUTIONAL DIAGRAMS 

Figure 2-1 shows several common types of constitutional diagrams that we deal 

with in solidification sti~dies.  Figure 2-l(a) represents a simple eutectic system typified 

by the Pb-Sn alloys. Here, solid Q o r  Pb crystals a r e  shown to have different concen- 

trations of Sn, reaching their  maximum Sn concentration of c at the eutectic temperature 
su 

of 45C.lK (183'~) as  described by the left, o r  Pb-rich. solidus line. Similarly, solid B 

o r  Sn crystals also have different concentrations of Pb, also reaching their maximum Sn 

concentration of c at the eutectic temperature, as represented by the right o r  Sn-rich 
s u  

solidus line. At each melt temperature, the o r  0 crystals a re  in equilibrium with only 

one single melt composition, a s  determined by the appropriate liquidus line. 

Figure 2-l(a) also shows that the four liquidus and solidus lines a r e  f a r  from being 

straight lines. The liquidus and solidus of the Sn-rich alloys may be approximately 

-*presented hy quadratic functions of the melt temperature. The liquidus and solidus of 

the Pb-rich alloys, on the other hand, would probably be more adequately fitted with 

cubic equations of the melt temperature. The exact degree of such fi ts  should, however, 

be determined objectively by statistical tes ts  (Anderson and Bancroft 1952). 

Figure 2-l(b) shows the complete constitutional diagram for the Au-Ag system. In 

this system, the Au and Ag a re  completely miscible, both in the solid and liquid phases. 

Hence, there i s  only a single liquidus and a single solidus for the entire system, instead 

of the two liquidus and sclidus lines shown in Fig. 2-l(a). It is immaterial whether we 

consider Au o r  Ag a s  Ihc! salvent. It i s  even arbitrary o r  artificial to consider the major 

constituent as the solvent and the minor constituent as the solute, since such a designation 

depends on whether weight percentages o r  atomic percentages a r e  used as the classifying 

criterion. Thus, an dbloy containing between 50 to 67 weight percent of Au would be 

considered a s  an alloy of Ag in Au if weight percentages a r e  used and, yet, should be 

considered as an alloy of Au in Ag if atomic percentages are used as the classifying cr i -  

terion. In many other systems, such a s  W-C, Ta-C, and W-B, this disparity i s  even 

wider and the designation of one cornponefit as the solvent o r  solute is  evbn less  meaningiul. 

It would, therefore, be better to identify an alloy of, e, g., 10% of Ag in Au simply as 

such; or ,  interchangeably, as an i lloy of 90% of Au in Ag. 
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A good system of solidification methodology, in particular the normal freezir:g 

equation, should be a self-consistent one. It will be shown using this Au-Ag diagram 

and several other considerations that the constant-k method i s  not such a system. 

Figure 2-l(c) shows the Cu-Au constitutional diagram. This system is characterized 

by having very large solid solubilities at either terminal rcgion. 

Figure 2-l(d) shows the Au-Zn constitutional diagram, revzaling the presence of a 

number of intermetallic compounds, ! . e . .  AuZn, AuZn , and XuLn Furt' ,er, at the 
2 8' 

compositions of the fir81 i7;9 rnmpounds, the liquidus and solidus reach their peak tem- 

peratures. In many such systems invoiving intermetallic compound formations, the liquidus 

lines, and even the solidus lines, have horizontal tangents (k = co/m = indefinite) at their 

peak temperatures at the most important compositions. This condition has important im- 

plications in the determination of tho segregation coefficients k, a s  will be describe~i.  

Figure 2-l(e) shows a portion of the Fe-C diagram. An i n t e r e ~  :ng feature ts that 
0 

a peritectic reaction occurs at a T of about 1765K (or 1492 C). At this temperature, the 
r 

solidificat!.on process is  discontinuous. A small  portion of the Fe-C system has two 

distinct liquidus and two distinct solidus lines, one set  above and one se t  below T . The r 
slopes of the two liquidus lines a r e  discontinuous at T . Not only a r e  the slopes of the r 
two solidus lines discontinuous, but even the values of the solute concentrations in the 

solid, i.e., c a r e  discontinuous. Specific;~lly, c changes abruptly from 0.10% at 
s' s 

slightly above Tr  to 0.18% at slightly below T . The study of solidification of Fe-C 
r 

alloys in this portion of the diagram thus requires dividing the solidification process into 

two regions, one above and one below T In each region, a unique se t  of liquidus and r ' 
solidus lines should be used. 

2.3 THE NORMAL FREEZING DIFFERENTIAL EQUATION 

Let c and c be functions of a modified melt temperature T = T - Tm, where T 
1 8 e e 

is the fir9d melting point of the pure solvent and T is the variable melt temperature 
m 

(Fig, 2-2). Thus: 
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where L(Tj and S(T) are functions of the modified melt temperature, for the solidus and 

liquidus curves of the constitutional diagram. 

At the bt ginning of normal freezing, time t = to = 0, the fraction so1id:fied p = p = 0, 
0 

c = c = c T = T , and k = ki = S(TO)/L(TO), where To can be determined from 1 l o  0' 0 

c = L(T ). The frozen length is  x = x = p H = 0, where H is  the total melt o r  crystal 
0 0 0 0 

length. 

At t = t, the fraction solidified, frozen length, and modified melt temperature are, 

respectively, p, x = ph, and T. At the end of the next short time interval k t from t, these 

values will respectively increase to p + Ap, x + A x, and T + A T. 

Balancing the amount of solute Q in the remaining melt at time t according to a 

general procedure previously described (see, e. g., Pfann 1952) gives 

where f represents tne loss of solute from causes such as  surface evaporation and 
1 

chemical reaction. This loss may depend on c A t ,  T, melt volume, o r  free surface. 
1' 

In many cases, f = 0. If we then take the limit a s  A t ,  A p, A x, and A T all 
1 

approach 2 x 0 ,  we obtaln the following basic differential equation for normal freezing: 

where Lt(T) i s  the temperature derivative of the liquidus curve L(T). 

In the above derivation, c and c may be in terms of weig!~t fract.ions. Q then 
1 s 

represents the weight of solute in the liquid melt for each one gram of original melt. If, 

however, c and c are in terms of atomic fractions, Q then represents the number of 
1 s 

moles of solute atoms for each mole of combined solvent and solute atoms in the original 

melt. 



2.3.1 Constant-k Normal Freezing Ecluation 

In a few cbnstitutional diagrams, ihe liquidus and solidus curves can be approximated 

by straight lines, When we a r e  dealing with very narrow ranges of freezing temperature, 

solute concentration, o r  fraction solidified, such a s  in the previous examples of growing 

pure germanium and silicon crystals and of forming germanium alloy diodes, the portions 

of the generally curved liquidus and aolidus lines of interest may be so  small  that they 

can be represented by two straight lines. We then have: 

where a and f a r e  the slopes of liquidus and solidus lines, and e and e a r e  the 
1 s 

i n t e r c p t s  of these lines, when extended, on t t c  vertical temperature axis (see Fig. 2-2). 

The normal freezing differential equation, Eq (25), then reduces to 

d p =  a 
(1-p) (a-f) T + (el-es) 

dT 

This equation i s  easily integrated. When proper initial conditions a r e  included, we obtain 

the following general, constant-k, normal freezing eriq~st;on: 

When pure ge rman iu~ i  crystal  o r  diode materials a r e  dealt with, only the termina; 

regions of the constitutional diagrams a r e  used. The two -hart llquidu,: w.d solidus lflrt?~ 

then usually both pass through the melting point of pure germanium, and both e and e 
1 s 

are zero. Equation (26) then reduces to the familar, constant-k normal freezing 

equation: 



This equation is so  important in materials  processing, particularly in the semi- 

conductor industry, that it has been repeatedly derived (Gulliver 1922, Scheuer 1931, 

Hayes 1939, Lunenu 1942, Mathier 1942, Scheil 1942, McFee 1947, and Pfann 1952). 

An analogous equation, known as Rayleigh's equation, has also been derived and used 

for  "simple" distillations in chemical engineering (Rayleigh 1902). 

2 .3 .2  Accuracy of the Constwt-k Normal Freezing Equatior. 

According to Christian (1965), Pfann's equation applied to reasonably dilute 

solutions, is a useful approximation until some 80C% of the liquid has solidified, that is, 

until p = 0.80. 

Dowd and Ro ;e (1953) studied the distribution of radioactive indium in german:um, 

and concluded that the indium conce~:tration obeyed Pfann's equation. On the other hand, 

Goruw and Jentoft (1967), in evaluating the effectiveness of normal freezing, column 

crystallization, and zone melting of n-C H in n-C H found that the segregation 
14 30 16 31, 

coefficient i s  a linear function of the solute concentration in the melt. 

Kurgistsev (1967) analyzer' .he ptoblem of determining k from experimental dat? 

and showed that the methods which reduce this problem to that of finding a solution of the 

equation on the assumption that k i s  constrult lead to  erroneous results .  

Brody and Flemings (1966) analyzed thei r  data on the kl -Cu system  sing their  

semi-theoretical, constant-k no16mar freezing equaticn. They emphatically conclu,~ed 

that the constant-k equation gives "accurate" results ,  although they had to multiply thei r  

experimental data by an unfounded factcr  of three  to achieve reasonable fit . Johnston 

and Til ler  (1962) considered the problem of the segregation coefficient k, ox effective 

~ f , g r e g a t i o n  coeft~cient k, varying as a function of the interface yosition (or  p), and 

determined some of the functions required to produce part icular solute dtstributions in 

the solid. Wilcox (1964) alao considered k to  vary with c , and rret up the necessary 
e 8 

normal freezing and zone melting equations fo r  numerical  integration. 



Pfann (1958) stated that the linear normal freezing equation, Eq 27,  doe^ not 

describe the complete freezing behavior for the whole length of the ingot. The complete 

concentration curve, however, can be calculated by Ha~nming's method (Pfann 195€!) 

by taking the dependence of k on tile concentration into account. 

2.3.3 Non-constant-k, Normal Freezing Equations 

As pointed out above, Eq (27) has heen very successfully used to determine gross 

concentrat!on profiles in the useful crystal, and other solidification behavior, of pure 

germanium and silicon materials. This is  true even when the liquidus and solidus lines 

a re  distinctly curved (Li, 1966) due to the unique conditions previously described. In 

other normal freezing studies related to general metallurgy, however, the entire 

solidification range must be considered. Such s t u d i e ~  include the investigation of the 

segregation of trace impurities at grain, subgrain, cell, o r  subcell boundaries; the 

formation of freezing-in o r  induced point, line, surface, and massive defects in elec- 

tronic o r  structural materiaia (Li, 1967b\; the selection of homogenization, oxidation- 

precipitation, diffusion-reaction, o r  other heat-treatments from the calculated dis- 

tribution cf alloying elements in polycrystalline welded o r  soldered joints; andthe magni- 

tude and character of voids o r  vacancies, and of ~.>s!dual s t resses  o r  strains,  in castings, 

caused by variable solid and liquid material densities. 

2.3.4 Quadratic Liquidus and Sol idu~ .- Lines 

When the solidus and liquidus cxn be represented by second-degree functions of the 

melt temperatureT = T - T ,  i - e . ,  
nl e 

Eq ( 2 )  then becorres: 



Hence, 

1 (a-f) + 
2 

= (T/To) [(a-f) + 

where Q = a/(f-a) and Q = (ab+ag-2bf)/(f-a) (b-g), a s  given by Li (1967a). 
1 2 

Li further showed (1967a) that Eq (28) reduces to Eq (27) only under the restricted 

conditions of very dilute melts, nearly straight liquidus and solidus lines, and very 

small solidification ranges. Hence, when one o r  more of these conditions a r e  not met, 

the use of Eq 27 in normal freezing studies requires caution. 

2.3.5 Cubic Liquidus and Solidus Lines 

An examination of binary constitutional diagrams (with k < 1) reveals that, of 171 

binary diagrams given in the ASM Metals Handbook (1948). 36 (or 21%) have distinctly 

cubic liquidus and/or solidus lines. It is ,  therefore, desirable to devive the normal 

freezing equation for cases with cubic liquidus and solidus lines, i. e. , when: 

For this case, Eq (25) reduces to (Li, 1968): 

where 

+ av /uv(d-h) (u-v) I 



Q3 = - [uv(2b-3dv) + au /uv(d-h) (u-v) I 
and 

Quartic and Higher Degree Liquidus and Solidus Lines 

Here, the liquidus and solidus lines, L(T) and S(T) respectively, can be repre- 

sented by two polynomials in T such that L(T) - S(T) i s  an nth degree function, and the 

degree of L1(T) is less  than n. Then, Eq (25) yields (Li, 1968): 

from which 

the Ti's a r e  the mots  of the polynomial L(T)- S(T), and the Q.'s a r e  the numerators of 
1 

the various partial fractions for the function L1(T)/ [(L(T)-s(T)] . 
2.3.7 Ideal Bli~ary Systems 

In an ideal solution having an ideal, dilute solid solution in equilibrium with a 

simple melt solution (Panish and Ilegems 1970). the liquidus curve (in mole fraction) i s  

given, according to Prigogine and Defay (1954). by: 

A H/r = 1 - exp (a+b/T) = 1 - U I 
where A H  is the molar heat of fusion, T i s  the absolute melting temperature of the pure 

0 

solvent, T is the absolute melt temperature, b = -AH/R,  a = - b / ~ ,  and U = exp (a+b/T). 

For  an ideal solution in equilibrium with a dilute ideal solution, the segregation 

coefficient for the dilute component can also be shown to be an exponential function of 

the reciprocal absolute melt temperature, both theoretically (Hildebrand and Scott 1950; 



Thurmond and Struthers 1953) and experimentally (Hall 1957; Orfoni and Hall 1958). Thus 

k = exp (fl + gl/T)  

and the equation of the ideal solidus curve i s  

c = exp (a + b / ~ )  exp (fl + gl/T) = exp (f + g / ~ )  = V, 
s 

where f l ,  gl, f = a + f l ,  and g = b + g1 arc  constants, and V = exp (f + g/T). 

The basic normal freezing, differential equation, Eq (25), then becomes: 

n 

exp (a+b/T) ( -b /TL)d~  
-dln(l-p) = 

exp (a+b/T) - exp (f+g/T 

Hence (Li, 1971). 

where To = b/ = exp ( a + b / ~  ), V = exp (f+g/To), and Q = b/(g-b). 
0 0 1 

Ideal Ternarv Systems of the Pseudobinarv Type 

Many ternary liquid solutions a r e  ideal in that the A, B, and C atoms in the 

solution are solidified into ideal solid solutions of AB-AC with the A atoms on one 

sublattice and B o r  C atoms on the other. Such systems can be treated as pseudobinary 

sys terns. 

In such systems, the mole fraction for the AB compound in the solid is (Panish 

and Ilegems 1970): 

where U = exp (a+b/T),  V = exp (f+g/T), b = - A H ~ ~ / R ,  a = -b/Tm, g = -AH /R, AC 
f = - g / ~ ~ ~ ,  AHAB i s  the heat cf formation of compound AB at i ts  absolute melting 

point TAB, and AHAC is  the heat of formation of compound AC at i ts absolute melting 

point T 
AC' 

The mole fraction of B atoms in the liquid solution i s  (Panish and Ilegems 1970). 



A B C 
By introducing chemical molar concentrations m , m , and m , we can balance 

the amount of B o r  C in the remaining liquid. Thus, by accounting for the amount of B 

in the liquid, QB, Eq (25) becomes (Li, 1972): 

Hence, 

where 

q = exp (f-ga/b), 

T , the initial freezing temperature, can be determined from the pseudoliquidus 
0 

AB line by substituting the initial melt composition c for c AB 
1 9 0  1 '  

Complete details of the derivation of Eq (32) and its application to the theoretical 

computation of the normal freezing behavior of GaAlAs system is given in Appendix D. 



2 . 3 . 9  Summary of Normal Freezing Equations 

The closed-form, normal freezing solutions described above, but expressed in 

alightly diffvent torms, are given as follows: 

@ Linear 

Quadratic 

Cubic 

General Polynomial 

@ Simple Binary Solutions 

Pseudobinary 



2.4 APPLICATIONS OF NORMAL FREE ZING EQUATIONS TO SOLIDIFICATION 

Application of the various normal freezing equations to solidification problems 

will now be described, with emphasis placed on the constant-k normal freezing equation 

( o r  Pfann's Equation) which i s  so important in the semiconductor industry. Specifically 

considered a r e  several  methods of fitting straight lines to liquidus and solidus curves;  

the meaning of the constant segregation coefficient; the best value of a constant segregation 

coefficient for a given solidification problem; and e r r o r s  in the use of a constant k when 

the liquidus and solidus a r e  curved. Next, we will show that the last portion of a freezing 

melt must be a eutectic having a fixed composition, i. e. , the eutectic composition. 

Finally, we give two useful numerical computation methods, i. e., the Runge Kutta Method 

and The Finite Difference Method, to treat  cases  not covered by the various normal 

freezing equations given above. 

2.4.1 Fitting Straight Lines to Liquidus and Solidus Curves 

Most liquidus and solidus lines a r e  more  o r  less  curved. There  a r e  many ways a 

straight line can be fitted to a curve. The most obvious method is  to fit a straight line 

through the discre te  data points (obtained experimentally o r  from the constitutional 

diagram) to minimize the sum of square of the residual e r r o r s  (line 1, Fig. 2-3a). This 

is the standard, least-square fitting technique (A~derson and Bancroft, 1952). F o r  most 

solidification work, however, this technique i s  improper. In the case  of pure Ge,  Si, o r  

o ther  materials ,  particularly during single crys ta l  growth, we a r e  mainly interested in 

the terminzl region (around the point E)  of the constitutional diagram. Line 1, however, 

often gives the highest e r r o r s  in these regions. Fur ther ,  these fitted lines often cannot 

be used in the various freezing equations, failing even to meet a t  point E for  ze ro  solute 

concentrations. These lines a r e  thus physically unsatisfactory and often meaningless, 

Moreover, line 1 does not give the correct  eutectic composit~ons.  

A second fitting method i s  to pass  both straight lines through the melting point of 

the pure solvent (1. e. ,  point E), while s t i l l  minimizing the sum of squares  of the residual 

e r r o r s  (line 2, Fig. 2-3b). Unfortunately, most liquidus and solidus lines have curvatures 

around point E. If these lines a r e  convex upward, line 2 will consistently underestimate 

the melt temperature for a given solute concentration, and vice versa. Further,  the 



Fig. 2-3 Methods of Fitting Straight Lines to Curved Liquidus and Solidus 
and Their Associated Segregation Coefficients 



all-important segregation coefficient k is markedly off, particularly when one of the 

liquidus and solidus lines i s  convex upward while the other i s  convex downward. The 

estimated eutectic compositions may be erroneous and useless in eutectic solidification 

work o r  in estimating the eutectic thickness at the grain boundaries. 

Another method, particularly useful for dilute solutions o r  pure materials, i s  to 

pass the straight lines through the point E and tangent to the liquidus o r  solidus curve 

(Fig. 2-3c). These fitted straight lines, however, generally give the greatest e r r o r s  

in the estimated eutectic compositions. Further, for many liquidus curves, particularly 

those for intermetallic compounds, the liquidus i s  ofterr nearly horizontal at the terminal 

region. The segregation coefficient k=k must then be zero o r  nearly so. The ET 
constant-k, normal freezing equation, Eq (27), then reduces to the meaningless form 

c = 0. 
s 

In Fig. 2-3d, the two straight lines pass respectively through the c 2nd c 
su 1 u 

points while minimizing the sum of squares of the residual e r rors .  While this set of 

lines i s  sometimes sufficient for eutectic solidification work, it i s  evidently inadequate 

for work on pure materials o r  dilute solutions. 

Figure 2-3e shows a set of fitted, straight liquidus and solidus lines that intersect 

the same csU and c points, a s  in Fig. 2-3d, but a r e  tangent to the respective liquidus 
l u  

o r  solidus curves. For  most eutectic solidification with initial melt compositions near 

the eutectics, this set of straight lines is superior to that of Fig. 2-3d. 

Figure 2-3f shows a set  of fitted straight lines that pass through the points E and 

c o r  c The segregation coefficient k = k i s  seen to be greatly overestimated 
su  lu' E U  

here. 

There a r e  other methods of fitting straight lines. We could, for example, assign 

different weights to different temperature o r  concentratioli ranges. These methods are,  

however, too specialized to be discussed here. 



2.4. 2 The Meaning of Constant Segregation Coefficient 

With a few exceptions, such as Tiller (1962), Wilcox (1964). and Rubenstein (1971), 

practically all  researchers in solidificc!tion assume a constant segregation coefficient k 

and, hence, perfectly straight liquidus and solidus lines on the constitutional diagrams. 

This coefficient k i s  generally defined as  the ratio of solute concentration in the just 

frozen solid to that in the remaining melt, i. e . ,  k = c /c The values of c and c may 
s 1' s 1 

be obtained experimentally o r  from the constitutional diagram. When dealing with dilute 

solutions o r  pure materials such a s  Ge, Si, W, o r  Ti, we find that both cs and c 
1 

approach zero and, hence, k = 0/0 which is undefined. In this case, we define k a s  the 

ratio of the slope of the solidus at point E (Fig. 2-3) to the slope of the liquidus at the 

same point. Thus, k becomes ko = kET of Fig. 2-3c. If c and c a r e  fitted by two s 1 

n-degree polynomials of the melt temperatcre, i. e. ,  c = C f T1 and c = C a T ~ ,  
s 

i = l  
i 1 

i= 1 
i 

then k = k i s  the ratio of the first  fitted coefficient in the solidus equation to that 
o ET 

in the iiquidus equation. Thus, k = f /a 
0 1 1' 

It has t een  shown that none of the several methods of fitting straight lines to 

curved liquidus and solidus generally give accurate results in solidification work. 

Basically, it is impossible to accurately fit straight lines to these curves. The s ix 

segregation coefficients, each given for a particular type of fitting in Fig. 2-3, usually 

differ widely in value. Each is useful only in its limited range of application. Given a 

specified solidification problem, it i s  often difficult to decide which constant k should 

be chosen. Even with a properly chosen k, when a specific initial melt composition is 

given, the beginning of solidification and, hence, the solidification range, cannot 

generally be correctly ascertained. The upper ends of the fitted straight lines in Fig. 

2-3a, 2-3d, and 2-3e do not even intersect at the point E, as they should. Ridiculous, 

negative solute concentrations and, hence, negative segregation coefficients may therefore 

appear. 



Each of the several  types of fitted straight lines in Fig. 2-3 gives a unique type 

segregation constant valid only in certain solidification applications. None is  generally 

useful, each being often greatly different from the others. This is easily seen, e. g. 

in the Ge-Sb system. The computed segregation constant from the constitutional diagram, 

i. e. , kCD = c /c  var ies  from 0.0276 a t  the melting point of germanium ( i . e . ,  1209K 
0 

s 1' 
o r  936 C) to 0.0390 a t  the eutectic temperature of 863K o r  5 9 0 ~ ~ .  This represents  an 

increase of 41.3% (see  Li 1966a). In a very dilute solution, e. g . ,  in most semiconductor 

work including the growth of nondegenerate germanium crysta ls ,  a segregation constant 

k = k = 0.0276 should be used for constant-k freezing equations, such a s  Eq (27). In 
0 

a Sb-rich melt near  the eutectic composition, however, a k = k = G .  0390 should be 
U 

chosen. 

In the case  of dilute Ge-Sb solution, if we use instead of the cor rec t  k then 'b 0' 

bk = k - k = + 0.0114, and the percentage e r r o r  in k is ~ k / k  = + 0.413. The percen- 
U 0 0 A k Ak 

tage e r r o r s  in c computed according to Eq (27), i .e.,  A C / C  = (1 + ) (1-P) - 1, 

O ,  40.9%, 40.7%. 40.5%, 40.2" 39.8%. 39.49,  38.7%, 37.6%, and 36.6% are 41.17 

f o r  p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95, respectively. The 

percentage e r r o r s  in p computed from Eq (27), i. e.,  

are -2.69%,, -1.89%$, -1.42%, -1.0% -0*819$, -0.604C/r, -0.422%. -0.2640/(, -0. 125a.v 

rind -0.00608%, respei .ively, for  the s a m e  values p* 

If, in the case  of melts  of near-eutectic compositions, we use k instead of the 
0 

cor rec t  k then & = k - k = -0.0114 and the percentage e r r o r  in k i s  now 4k u ' 0 u %I 
= -0.292. Thc percentage e r r o r s i n  the computed c f s  a r e  then -29. I%, -29. I$, -23. %, 

-28,8%, -28.7%, -28.5$, -28.3%, -27.9%. -27.3% and 26.8%. respectively, for  the 

same ten values of p. The correspondit~g percentage e r r o r s  in the computed p 's  are 

now 2.74%, 1.90%;. 1.42%, 1.08%, 0.816%, 0.6019, 0.41.9%, 0.262%, -,.124%, and 

0.00602%,, respectively. 

Yet, the Ge-Sb system should be considered as a fairly well-behaviored system. 

The possible e r r o r s  in k and, hence, computed c ' s  and p's using atly constant-k freezing 



equations, a r e  even much worse with many other systems. Consider, for example, the 

Au-Ag system having a constitutional diagram of the type shown in Fig. 2-lb. Any 

Au-Ag alloy can, therefore, be treated either as an Au alloy containing Ag a s  the 

solute, o r  as an Ag alloy containing Au. Considerinr, I .,! as an Ag alloy containing 

Au, we see that the c is always greater than c e ~ c e p t  b.. the end points, where s, Au 1, Au 
they a r e  equal. The segregation coefficient k = 

Au k ~ u  in Ag 
is thus always. 1. In 

fact, k  varies from 1.000 to over 2.080, for the temperal,ure range of 1336K o r  
Au 

1 0 6 3 ~ ~  to 1234K or 960.5O~. Considering the same alloy as an Au -.lloy containing 

Ag, we see c never exceeds c 
1, Ag' 

Hence, k -- 
~ g  k ~ g  in AU 

never exceeds unity. 
s,Ag 

In fact, k  varies f rom iess  than 0.1986 to  1.000 over the same teinperature range, 
Ag 

representing an increase, of over 6007; (Li 1968). 

Li (1968) has fitted, by least-square techniques, the Au-Ag liquidus and solidus 

curves using straight lines passing through the Au terminal point, and also by quadratic 

o r  cubic polynomials through both the Au and Ag terminal points, According lo the 

best-fitting equations presented, the constant segregation coefficient a t  the -4u terminal 

point varies from 0.8781 through 0.7015 to 0.7287 for the linear, quadratic, and cubic 

polynomials, respectively. Thus, even at the same Au terminal point, the k = f /a 
1 1  

can vary by a s  much as 25.2% depending pn the degree of the polynominls chosen. The 

order  of these k values i s  also inconsistent with the degree of the polynomials. 

Thus, we a r e  often faced with a bewildering a r ray  of unique segregation constants 

including: k Fig. 2-3a; k  Fig. 2-3b K Fig. 2-3c; k Fig. 2-3d; k Fig. 
IS' E * ET' U' UT' 

2-98; k  Fig. 2-31; and koT1s such as k EU' k , and k 
QT,~' oT,2 Any indiscriminate 

OT , 3 *  
use of unfipecified k i s  likely to confuse and mislead, particularly with melts of medium 

high solute concentrations such a s  4.59 by Cu in A1 (a favorite alloy system for 

solidification study), for which t h ~  choice of I< is the most abundent. 

For  any binary alloy system A-B in general, and the Au-Ag system in particular, 

the segregation coelficient of one component in the other, e. g., of Ag in Au, is: 



The other segregation coefficient for Au in Ag in the shme alloy is: 

If c * c thenK e l a n d l - k  c 2 1 - c  
1, A&* 

Hence, k must be 
s,Ag 1,Ag' At4 - Ag 1,Ag A3 

2 1, as observed. Thus, if ',A in < 1, then k B in A 
must be >1. 

Further, since c = L (T), kAu ca:mot. from the last equation, be constant 
1,Ag Ag 

unless kAg E 1 t kAU. This condition is true only when the liquidus ar.d solidus a r e  one 

and the same curve, in which case Eq (27) reduces to the meaningless form c = c = c . s 0 

Notice that a l l  the above k's refer to a system of c 's and c 's on either the s 1 
weight o r  the atomic scale. That is, the k's a r e  elther kWtls o r  k '6. It can be shown at 
that kwt cannot be the same as k for  any two alloy clmponents unless c = c on both 

at  s 1 
the weight and atomic basis, i.e., only when both the liquidus and solidus are ,  again, 

one and the same. Further, if kwt i s  constant, k cannot be constant, and vice versa. 
at 

Hence, both kAU and k in the Au-Ag system o r  kA in and k in any binary 
Ag B in A 

system, whether on the weight basib: or on the atomic basic cannot be constant but must 

vary with the melt temperature. 

2.4.3 The Best Value of the Segregation Coefficient 

The best value of constant segregation coefficient k dewnds, of course, on the 
C 

alloy system. For a fixed alloy system, the best k varies, a s  shown above, with the 
C 

selection of atomic o r  weight fractions for expressing the solute concentrations, !he 

initial melt composition, and the degree and number. of terminal restrictions in the 

polynomial fitting of the liquidus and aolidus ct ;ves. A change in the least-square 

fitting method (to account, e.g., for the fact that e r r o r s  occur in both the solute con- 

centrations and melt temperatures rather than only in the concentrations o r  temperatures) 

also changes the value of kc. The best kc also depends on the use of the resultant 

solidified material, In the manufacture of criticai electronic, optical, o r  mechanical 

devices, the objective may be to minimize either absolute o r  percentage e r r o r s  in 

solute concentrations c, concentration gradients c. = dc/dp, o r  other properties related 
P 



to c or c 'The minimization is to be achicvecl cithcr over 3 ~l)~cil'icc\ region (i ,c. ,  
I P' , 

I)cbtween two frnclions solidified or p or at n rritirnl location (i.c., at ~ h c  I'rac:tio~l 
* P1 2 

I 

I solidified, p). The best kc depends not only on thu  magnitude o f  nllos,al,lc error, l)ul 
%i 
i on whether the error is positi\.c or negative for Lhc same magniturlc. SpeeiSic*~lly~ 

. e 1,i (1967) has shown that i f  overestimated c values cause more serious clamngc* !hnn 
0 
I 
t 

underestimated c's, then a slightly int'lated k shoulcl be used for safety, especia1:y 
C 

when k and p are large, 
C 

i' 
\., . . s 

Howcver, i t  is always possible to find the optimum k c' for use in Ecl (27) for 

1 i example, to best I, t any given normal or abnormal freezing data. This is true even 
i , S  E f with  alloyrs having distinctly curved liquidus and solidus lines. Further, the errors duc 

a t to the assumed constancy of k can usually be estimated either analytically or Ily 
C 

0 ' 1  numerical methods. In the very narrow melt temperature range around T :- 'S - T*  
; - h  m c 

f for cxamnle, the optimal k can be determined from Eq (27) and (28). 
! C 

% i 

i 
where @ = l / ( l - k  ), an+ 3, P, and r are defined in connection wi th  Ey (28). llence 

C c I 

the optimized constant k 4. e. , 
c' 

koP is such that: 
c * 



pr. 
Q d 

In the above derivation, the liquidus and solidus curves are assumed to be 

adequately representable by quadratic functions of the melt temperature. In the 

general case when the liquidus and solidus are  representable only by nth degree 

polynomials, the optimized k i s  
C 

T 
aOP - 1 

t n  - 
T 

kOp = A- = I +  0 for T ZT 
c 0 P n T-T (36) 

dc 
T i 

q l i n -  T 
0 

+ C q l f n  T-T 
0 i=2 

For a wide solidification range, the optimized k may be determined by least- 
C 

square techniques for the general polynomisl case, such that: 

2 1 

kOP - 1 kOP - 1 - q1 - 'Ii 

~ [ t n  (?)I (c) - - +($)](c) i=2 ( )  (37) 

In practice, the koP may often be more easily obtained by numerical methods 
C 

using a computer. Table 2-1 lists the numerically obtained values of koP for the system 
C 

of Sb in Ge. The k y  i s  seen to increase with initial melt concentration c and fraction 
0 

solidified p, the increases being greater with larger values of c and p. The standard 
0 

error. in the computed p, computed with these koP according to Eq (27) and compared 
C -1 2 

with corresponding p values from Eq (28), can be as small a s  3 x 10  for c/o = 

0.001 and p = 0.01 to 0.26. 

m m P m w  



TABLE 2-1 OPTIMIZED CONSTANT k. k o P F 0 ~  Ge ALLOYS 
C 

1 
CONTAIhTING Sb AS SOLLTE 



2.4.4 Errors  Due to Curvature of the Liquidus and Solidus Lines 

We consider here the e r r o r s  involved i11 the use of the constant-k, normal freezing 

equation when, in fact, the liquidus and solidus curves are not straight lines. Three 

cases are considered: quadratic, high-degree poiynomial, o r  exponential functions of 

the melt temperature T m ' 

In the first case, the liquidus and solidus curves can be represented by quadratic 

function of Tm, i. e. . 

The segregation coefficient k used in Eq (27) should, particularly for such dilute 

alloys as semiconductor germanium o r  silicon and pure Be o r  Ti, be: 

Equation (27) then shows that the proportion of liquid remaining is: 

According to Eq (28). the proportion of liquid remaining is, however, 
t 

B 
2 2 f-a 

T T o - + ] ( + )  ~ + B ~ ( T - T  )l=($-'[l-qT-T0)] 
p1 I +(b-g)~~/ (a -O a- f o 

0 

where 0 = (ab+ag-2bf)/(f-a)/@-g) and r = (ab+ag-2bf)/(a-f) 2 

2 1 
To estimate p by means of p of Eq (25) thus involves percentage e r r o r s  1 1 

amounting to: 



This er ror  is  thus roughly proportional to the solidification range AT = T-T . 
0 

Estimating the amount of eutectics thus represents the worst-case condition for the use 

of the constant-k normal freezing equation, Eq (27). particularly when initial concen- 
12 

tration c is  small. Error  I. i s  also inversely proportional to the square of the slopes 
0 0 

of the liquidus and solidus lines, i.e., (a-f)&. When both a and f a re  small, i.e., when 

the constitutional diagram has very steep liquidus and solidus curves and, in particular, 
2 

when a-f i s  small, l/(a-f) i s  very large and, hence, very large e r ro r s  may result. 

Examination of Hansen's (1958) binary constitutional diagrams discloses many 

systems whose liquidus and solidus are  very close at the melting point of the pure 

solvent (i. e., k = 1.0). or  a re  very close at the eutectic temperature when eutectic 
0 

growth is  of prime interest. For example, binary alloys having k = 1 include silver 
0 

alloys containing Cd, Li, and Zn; gold alloys containing Ag, Al, Cd, Co, Cu, Ga, Fe, 

Pd, and Zn; iron alloys containing Be, Co, Mn, Ni, Si, and V; and nickel alloys of Cr, 

Mn, Ta, Ti, and V. In addition to k te 1, many systems have liquidus and soli8-.  
0 

adequately representable only by cubic o r  higher degree functions of the melt temperature. 

Such systems include Ga in Au, Cd in Mg, Mg in Cd, Co in Pd, Mo Cr, Cr  in Pd, Cr in 

Ti, Cu in Pd o r  Pt, Mn o r  Ni in Fe, Cr, Cr, Fe, and Ni in Pt, and Ta, Ti, and V in 

Ni. 

- 3 
As an example, consider the case of Sb in Ge. Here, a = 4.668 x 10 , b = 

-6 -4 -8 
-6.047 x 10  , f = 1.288 x 10  , and g = -8.222 x 10 (Li, 1967). Hence, 

el2 = -0.00133 x (T-T ) = -0.133 A T % 
0 

The maximum solidification range to be considered occurs when a semiconductor- 

grade germanium starts  to solidify at about the melting point of pure germanium (i. e., 

1209K o r  936'~) but finishes the solidlication a t  the end of a rod o r  at the boundaries 

between subcells o r  subgrains at the eutectic temperature of 863.1K o r  590'~. In this 



case, T = 0 and AT = (1209-869.1)K = 346.1K. The maximum er ro r  in the growth 
0 

of Sb-doped germanium crystals i s  thus 

That is, the constnnt-k equation consistently underestimates the actual p in the Ge-Sb 
1 

system. This underestimation may reach a maximum of about 44.7%. 

As another example, consider Co in Ti. According to Hansen's (1958) diagram, 

coefficients a, b, f, and g a re  2.3552 x 4.3175 x 1.4624 x 10'~. and 
-6 

6.7989 x 10 , respectively. The value of cv may then be computed to be -0.10764%. 

Since the maximum solidification range is  T = 908.1K. the maximum e r r o r  is 

e 12 - - CY A TmM = -68.35% 
max 

Thus, the amount of the critical eutectics a t  the grain o r  cell boundaries in these 

alloys, estimated using the constant-k equation, is always lower than the true value by 

up to 68.35%. 

Often, the liquidus and solidus can be represented only by nth-degree polynomials 

of the melt temperature, i. e. , 

The proportion of the remaining liquid is  then given by Eq (29): 

where Ti and \ have been previously defined in connection with Eq (29). 



Hence, the percentage e r ro r  involved in the estimate of p by means of the 1 I 
constant-k equation (Eq 27) when the liquidus and solidus are  high-degree polynomials 

is: 

1 + (T-T ) C T O i - 9  i 

which is again proportional to solidification range A T = T - T . .. 0 

For ideal solutions, the molar concentration for  the solvent A atoms is 

-A HA 
l n x A = -  

T T~ T I+-+- ( TA 2 2 - * * * )  

'I' *A 

The molar concentration for the solute species is 

I . 

t 
for the liquidus or  solidus lines, respectively. 

Hence, an exponential function of the melt temperature in the liquidus and solidus 

equations can be approximated by appropriate polynomial functions of the melt temperature. 
' I  

The percentage er rors  involved in the use of the constant-k equation can, therefore, be 

similarly estimated or computed. 
I 

2.4.5 The Last Portion of Freezing Melt I 1  

Chalmers (1969) discussed the f ~ c t  that normal freezing of an alloy melt results in 
* - .  1 

the last material solidifying at concentration8 higher, sometimes considerably so, than 

that of the original liquid. In 1939, Hayes and Chipman stated without proof that the last :i 
portion to freeze may be a eutectic. 
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To understand why the last portion of n melt to solidify under nonequilibrium 

conditions always takes place at eutectic temperature TU (Fig. 1-13) yielding, in- 

variably, the eutectic, we can intuitively reason as follows, We consider only the 

extreme case of a very dilute melt whose initial solute concentration is  co =O. During 

one stop of the freezing process the melt temperature decreases by perhaps ATm = 

- AT = 10K o r  lK,  with an always incomplete o r  fractional loss by solidification, i.e., 

b p  o r  bp/(l-p) respectively, of the melt. Simultaneously, both the freezing solid and 

remaining melt are solute-enriched according to the solidus and liquidus curves (for 

the usual case when k < 1, a s  shown in Fig. 2-2). This stepwise nonequilibrium 

freezing process may be repeated many times, but eventually the melt temperature 

T must come down to T . At T , there must still be a finite but perhaps very small m u u 
amount of the liquid melt left (since a fraction of a small fraction is  still a finite 

fraction). This liquid, being at T , has the eutectic composition c = c 
u au* 

One can also obtain a proof of this conclusion from the normal freezing equations. 

Since at Tm = T = c the proportion of the normally-frozen eutectic P is from 
u* Cs sup u 

Eq (27), for the constant-k case with linear liquidus and solidus lines. 

When the liquidus and solidus curves a re  quadratic functions of the melt temperature 
2 

Tm' i.e., c = a (Te-Tm) + (Te-Tm) and cs = f(T -T ) * g (T -T 12, the appropriate 
I .  e m  1 e m  

normal freezing equation gives 

where r and q a re  constants for a given alloy system, a s  defined by Li (1067a); and a, 

b, f. and g correspond, respectively, to A b a , and bs. i d s  

Since cBu, co, k, Te, Tu, and Ti all  have real, positive values, and since a, 



f, b, g, r, and q are  all real constants for a given alloy system (with a > f w 1 b 1 
o. 1 g ( ), P must therefore be real, positive, nonzero, and calculable. 

U 

Similar mathematical proofs can be obtained for cases where the liquidus and 

solidus curves a r e  cubic and higher-degree functions of the melt temperature (Li, 1968); 

a r e  exponential h c t i o n e  of the reciprocal absolute melt temperature, i. e., ideal 

solutions (Li, 1971); o r  a r e  portions of a ternary constitutional diagram of the pseudo- 

binary type (Li, 1972). 
- ,- , . - . 

It should be emphasized that determining p from Eq (27). particularly when co 
u 

i s  small, represents its worst-case usage. As will be pointed out, such a usage is not 

only pedagogically incorrect but may yield erroneous and completely misleading results. 

Such not uncommon usages (see, e. g. , Flemings and Mehrabian, 1971) are, therefore, 

to be discouraged. 

Mathematical proofs with the aid of the non-constant-k, normal f r e e e i ~ ~ g  equations 

are, therefore, necessary for most cases where the liquidus and solidus lines a re  

curves rather than straight lines. The intuitive proof given above i s  particularly desir- 

able because it is universally true and applies to all normal freezing conditions, regardless 

of the types and shapes of the constitutional diagrams. All these proofs are,  however, 

based on the assumptions of zero solid diffusion and infinite liquid diffusion. While 

solid diffusion is negligible in most freezing studies, a s  will be more full discussed, 

the liquid diffusion in actual freezing processes is  never infinite. This condition results 

in a solute-enriched layer next to the solid-liquid interface (Tiller et al, 1953). The 

higher solute concentration in this layer, rather than the lower concentration in the main 

body of melt, now determines the conceiltration oi the freezing solid. That is, the 

effective (variable) segregation coefficient k is  now increased toward unity. However, e 
k never reaches unity at finite growth velacity (that is, solute rejection by the freezing e 
solid into the remaining liquid is unavoidable) and, above all, there is always a final 

solidifying portion in which the freezing conditions a re  nearly normal (Tiller el al, 1953). 

Hence the last solidifying eutectic weight o r  volume is  never completely eliminated. 



The above discussion thus shows that nonequilibrium freezing always results in 

the formation of a finite amount of eutectic at the eutectic temperature no matter how 

small the initial solute concentration. - 
2.4.6 Numerical Computation of Normal Freezing 

The array of normal freezing equations presented above does not cover all con- 

ceivable types of constitutional diagrams. Often, the liquidus and solidus lines a re  not 

simple polynomial functions of the melt temperature. Computations, using closed-forr.? 

equations, of the normal freezing behavior directly from basic thermodynamic constants 

a re  impossible for cases where the liquidus and solidus lines are  not simple, logarithmic, 

o r  exponential functions of the melt temperature. For example, Thurmond and Kowalchik 

(1960) has shown that, when the heat capacity of the pure supercooled liquid solvent is 

constant but that of the pure solid solvent is linearly related to the melt temperature, 

the logarithm of the solute concentration in the liquid has three additive terms in addition 

to the one previously given for the ideal binary solution case. Here, the normal freezing 

differential equation cannot be solved exactly. Reisman (1970) has presented a large 

number of complicated equations for the liquidus lines, the normal freezing differential 

equation of which cannot be solved exactly and numerical methods must be used. 

In most cases, the liquidus and solidus lines can be adequately represented by 

polynomial functions of the melt temperature. Yet, determination of the roots of the 

polynomial functions for insertion into the closed-form, general normal freezing equation, 

Eq (30). must be accomplished numerically if the polynomial functions a re  of quatic o r  

higher degrees, Hence, there is a definite need for a reliable numerical methods of 

known accuracy that can be applied to any type of constitutional diagram. 

A literature search failed to reveal such a numerical method. Gulliver in 1922 

and Brody and Flemings in 1966 presented the same numerical method for variable-k, 

normal freezing computations. This i s  a combined graphic and finite-difference 

(Butler and Kerr 1962) method that approximates the liquidus and solidus curves by a 

series of straight-line segments. Pfannls equation, Eq (25). is repeatedly used, once 

for each pair of the segments between two consecutive isotherms. This method is  

simple and convenient, but its accuracy is limited by the large (at least 5 o r  10%) 



error8  introduced when graphically entimating the local liquidus and solidus slopes 

and by the repeated e r ro r  accumulation o r  buildup through the many computation steps. 

The accuracy, therefore, cannot be high or  even satisfactory for critical solidification 

work, no matter how emall the size of each com2utation step. Further, the accuracy 

has never been compared with closed-form, normal freezing solutions, other refined 

numerical methods, o r  even the same method with reduced computation step sizes. 

Note that Gulliver (1922) did disclose a useful method for metallurgists at a time when 

numerical methodology was not advanced and when modern computers or  even calculators 

were not available. 

Two numerical computation methods a re  briefly described bebw. These a r e  

the Runge-Kutta method arid a finite-difference method. 

2.4.6.1 The Runge Kutta Method 

The Runge-Kutta method (Kunz, 1957) can be used to numerically integrate the 

normal freezing differential equation and to  produce the final, computed value of fraction 

solidified p at any melt temperature T. This method is  stable and self-starting; that 

is, only the functional values a t  the initial, o r  a single previous, point a re  required to 

obtain subsequent functional values (i. e. , p and T). For this reason, we can easily 

change the step size h at any step in the computations. This i s  particularly desirable 

when the computed results must be more accurate in some solidificat on ranges than in 

others. 

The ordinary differential equation for normal freezing, given a s  Eq (25), can be 

written: 

where L1(T) i s  the temperature derivative of L(T), Lf(T) Is the temperature derivative 

of the fraction solidified p(T), i. e., dp/dT, and f(T, p) i s  a new function of both T and p. 

For the cue  with quadratic liquidrws and eolidue lines, for example, the above 

equation becomes: 



i . . -  
i :  

The initial conditions a re  p = 0, T = To. L(T ) = c , and S(To) = cSo (Fig. 2-2). 
i t !  0 0 0 
8 h !  
t 

The above normal freezing equation is  solved numerically by using a single-step, 

fourth-order Runge-Kutta integration process (Kunz, 1957). In this process, the value 

of f(T, p) at T = T is  used to compute f (T, p); earlier values f 
n n+l n-l, fn-2. etc., a re  

not used. 

The relevant equation is: 

"I ' 

" I 
where, for step size h; 

* . I  I &  
3 + 

2.4.6.2 The Finite-Difference Method 

The basic differential equation for normal freezing, Eq (25). i s  

where C, = L(T) and cs = S(T) a r e  function of the modified melt temperature for the 

liquidus and ~olidus.  respectively. L1(T) i s  the first derivative of L(T) with respect to 

the modified temperature T and can be found from L(T) = c,. 

During a ehort time interval At, T ,  c, = YT), md c = S(T) are a11 fairly con- 
8 

atant, and usualIy both c and cB are  increasing. Their difference, Q(T) = L(T) - S(T), 
L 

can also be considered as constant, which i s  the essence of the finite-difference method. 



Hence, 
m 
1 

Pi+l ,-In-= ' -Pi+l - L'(T) 1 ITi" I n  (1-P) d T = - -  
Pi 1 -pi Q(T) '7(Ti) 

where 

Knowing 

follows: 

pi at T = Ti, we can estimate pi+1 at T = Ti+1 (SO that A T  = Ti+l - 

* ,  i Equations (44) and (46) allow us to compute the complete normal freezing behavior 

of an dloy having an initial solute concentration in the melt co = c The darting 
LO' 

point for this computation is the point at which the liquid begins to greeze, i.e., 

= 0. T =To, c1 - - cl0 = cot cs = c 
80 
, and Q(To) = L (To) - S(To). From these known 

values of parametere, Z can be cv.z?.~d by Eq (44a). from which 
0 

We can then rpecify a wn~tan t  (or variable) value of tncremental temperature 

AT = Ti+1 - T , and find the mcceooive valuer of T. From theas Tfo, we c m  compute i 
the valuer of YT), S(T), and Q(T) - L(T) - S(T) for mtbrtitution and use in Eq (45). 



Note that, in deriving Eq (45), the value of YT), S(T), and Q(T) = YT)  - S(T) 

a r e  assumed constant during the very short time interval ~t o r  temperature interval 

AT = Ticl - T . This represents the zero-th order approximation of polynomials L(T) 
i 

and S(T). This approximation i s  selected to integrate the basic normal freezing 

equation, Eq (26), for use in the finite-difference method. As will be shown, this 

method gives useful resulte when comparod with oxact solutions from Eq (28) - (30). 
Another way to integrate Eq (25) for use in the finite-difference method is  to con- 

sider S(T) constant during the very short time or temperature interval, We then have 

A = -dl, (1-p) dT = dfn [L(T)-,'I ) ] 
1 -P I ' r - S(T) 

The results, computed according to Eq (46) are, however, no better than those 

obtained from Eq (44) - (45); they are  therefore omitted from further discussion. 

Added accuracy in the computed results may be achieved if we replace Q(Ti) 

in Eq (44) and (45) by Q(Ti, i+l ), the average of the two values of Q(T) at T = Ti and 

T = Tirl, respectively. We therefore have a choice of the following two computation 

schemes, which a re  arranged in the general order of decreasing accuracy in results but 

increasing eaee in usage: 

I. Equations 44 m d  45, together with $(Ti, i+l 
) Q(Ti+l, i+2 1 

11. Equations 44 and 45, together with Q(Ti) and Q(Ti+l). 

2.4.7 Computation Example 

The following computations illustrate the above procedures. The alloy melt con- 

sidered here consists of 10% % in Ge, i. e., co = 0.10. 

The liquidua aad solidus curves, L(T) and S(T) respectively, for the Ge-rich 

portion of the Ge-Sb system have been determined and represented by second-order 

equations, from which we find: 



1 0 
I \ Table 2-2 gives the computed values of the frabtion, p, of solidified melt at 1 7  

f 

i different melt o r  interface temperatures, for 1% Sh in Ge. Both computation r~chemes 

I were used, together with a AT of from 10K down to 0. O O O l K  in five decades. The number 
I of set8 of computed results thus varied from 32 (for AT = 10K) to 324,104 (for AT = 0.001K). 

Only a small fraction of these r e ~ u l t s  a re  tabulated. Table 2-2 also includes the corres- 
\ 

! ponding values of p computed with .. closed-form equatior derived for cases where both 
.) 

i the liqtlidus and solidua curvt:s can be exyressed as quadratic equations o.! 1'. Eq (27), 

f such as those gi;ren above for the Ge-5, svstem. 
x* 

In comparing the p values at a particular T, w3 notice that: 

a The two computation schemes gave results cloee to the corresponding values 

obtained from the closed-form solution. This indicates that the numerical 

method is  useful, at least for 10% S, in Ge 

Scheme I gave much better results than scheme 11. Thus, the . Jue of 

averaging YT), S(T), and Q(T) during the computations i s  substantial, 

and averaging proceduree should generally be used. 

a Decreasing AT generally improved accuracy o r  decreased deviation from 

the closed-form solution values, as would be expected 

For a given scheme with a ~pecified AT, accuracy consistently improved 

with the decreacting melt temperature, Tm. 

These conclu8ione are quantitatively dioclored in Table 2-3, which gives the 

average and standard deviations from the ptci by the closed-form eolution, for the 

different achemes. Thi8 table #how8 that for 10% Sb in Ge: 



t i i  =I 





r Minimum discrepancy from the closed-form results for each scheme was 

reached with a medium AT. Scheme I reached minimum standard deviations 

of about 3 x 16' with a 6I. of O.lK, while scheme I1 had minimum standard 

deviations of about 1 x ld5 with a AT of 0. OlK 

Except with a AT of 0. OOlK, scheme I generally gave results one to over 

two orders of magnitude more accurate than corresponding values obtained 

from scheme I1 

The average deviations of the results from p (from Eq (27) computed with 

scheme I1 were consistently positive; that is, this scheme usually over- 

estimated p. Scheme I, on the other hand, changed from underestimation 

to overestimation a s  dT decreased from 10K to 0. OOlK 

Average deviations were as low as 1.6 x ld7 for scheme I with AT = O.1K. 

Even with AT = 10K, the same scheme had an average deviation of only 

-1.3 x 

Knowing the standard deviations and number, n, of results per set, one can 

easily compute the maximum probable deviations for any single result. Thus since 

scheme I had an average deviation from p of -1.34 x 10'~ and a standard deviation of 

6.50 x lo-' with a AT of 1. OK and n of 324, 95% of the time one would expect any single 

numerically computed result to be accurate within the range -1.34 x ld5 - + 2.0 x 6.50 
-5 x o r  4 . 0  x lo-' rml -2.64 x 10 ; that is, under these conditions the numerically 

computed result is almost always underestimated, by from 0.40 to 26.4 ppm in 95 

timeo out of 100. 

The above finite-difference procedures are  well-adapted to rapid, automatic 

machine computations. Further, all these procedures apply for any liquidus or  solidus 

curves that can be represented by reasonable mathematical functions, F(T) and G(T), 

respectively. These functions may be power series of T and include, as special cases, 

the simple straight-line (constant k) o r  quadratic equations shown above. These 

functions may also be exponential, logarithmic, o r  o h e r  types. Even several different 

functions for the eame liquidw or  eolidue curve, but in different freezing ranges, can 

be handled with nearly equal facility and computcrtional speed. 



PART I11 

NUMERICdiL PROGRAM 

Section 1. INTRODUCTION 

To understand solute segregation and defect formation in single crystal growth 

thoroughly, one requires a complete characterization of the (mass) diffusion and 

temperature fields in the solid and remaining melt. The zero-gravily effect on solidi- 

fication appears LO be subtle and may be overshadowed by other effects invariably in 

any such growth process, a condition necessitating that such characte'rization be 

accurately defined. Unfortunately, the coupled partial differential equations for the 

diffusion and temperature fields are  generally not solvable. Although special-case 

solutions have been given for some types of physically nonsatisfying two-phme Stefan 

problems, we must resort to numerical computations for the genera? case solution. 

Existing numerical methods are  always subject to such unrealistic assumptions a s  

constancy of interfacial temperature, segregation coefficients, diffusion constants, and 

other material thermophysical properties. 

A program for the numerical solution of unidirectional solidification (or crystal 

growth) from a semi-infinite binary alloy (with nonconstant segregation coefficient) has 

therefore been initiated. We numeric ally determine the irrterphaoe lemperature, and 

temperatures and concentrations of the mesh points, for the interphase point after each 

time interval. The interphase temperatures and the temperatures and concentrations 

for the two adjacent mesh points are  solved, iteratively, only after convergence has been 

obtained. The temperatures and concentratfons of the remaining mesh points are  deter- 

mined by solving two tridiagonal systems of linear equations. The semi-infinite nature of 

the problem is  handled by admitting a s  mesh points enough points, so that conditions at 
t 

the penultimate (next to last) point have not changed significantly from tile original onbs. 

A acheme with variable time intervals is adopted to achieve convergence within reasonable 

computing time. 



We have checked out the program for a binary alloy. The results compare favor- 

ably wlth those of the exact analytic solution, differinq mainly in that the interphase 

temperature is not constant as assumed by the analytic boldtion. 

Section 2. MATHEMATICAL DEFINITION OF THE SOLIDIFICATION PROBLEM 

We consider here a liquid binary alloy directionally solidified into two phases, 

liquid and solid. We consider the liquid alloy to be semi-inf~nite with original (at t = 0) 

temperature 'f and concentraiion C Solidification occurs when the temperature at 
0 0' 

x = 0 is changed from T to a lower value TI, either instantaneously o r  gradually, 
0 

such that Tl is below the temperature T a t  which the liquid mixture at concentration 
2 

Co can be in iquilibrium with a solid phasr!. As solidification occurs, the solid phase 

grows and its boundary is given by x = y(t), the interface point, and the interface tem- 

perature at this point is Ti (t). The partial differential equations describing the solidi- 

fication process are: 

a 2 ~ s  a T~ a2c 8 ac 
8 a = ; D  - = -  

s 2 a t  s 2 a t  for o < x < y(t) 
a x  ax 

a 2 ~ &  a T C  a 2 C, ac, 
- a -- L ax2  ; D ~  a t  2 =- a t  for y(t) < x ( 4 4  

a x  

The variables T and C represent the temperature and concentration (of solute 

in solvent) and the subscripts 4 and s denote the liquid and solid phases, respectively, 

The quantities As. A D . and DL a re  assumed constant. The following conditions 4' 8 

are ausumed throughout: 

T (x, 0) = T and C1 (x. 0) = Co 
;t 0 (49a) 



aT s aT4 
PY~W = ks - kt= for x = y(t) 

(b [Ti(t)l - f A  [ ~ ~ ( t ) ] )  y(t) = D - - D - for x = y(t) 
4 ax s ax 

Equation (49a) specifies that the original mixture is all liquid at temperature T and 
0 

concentration C Equation (49b) is a consequence of the semi-infinite nature of the 
0' 

mixture so  that, at any time t, the portion near inffnity is unchanged.  quat ti on 

(49c) assumes that there is an interface temperature Ti(t) at the solid-liquid interface 

plane and that both the solid and liquid phases a t  x = y(t) have this temperature; there 

is no jump in temperature. Equations (49d) and (49e) state that the concentrations of 

solid and liquid at the interface a re  given by the solidus and liquidus curves, respectively, 

of the constitutional diagram for the alloy. Equation (49f) connects the derivative of the 

moving boundary with the redistribution of temperature, and Eq (49g) connects the same 

boundary with that of the concentration. 

The conditions on Ts(o, t) and Cs (0, t) a re  not fixed in our discussion and a number 

of alternatives are considered: 

T (0, t) = T (t), with T (t) equal to a constant for  all t, s 1 1 

Linear, Tl(t) = To + t(T1-To)/s for  t < s  and T (t) = T1 for t 2 8, 
1 

-t/s E q o w n t h l ,  T (1) = T1 + (To - Tll e , M, ~ ~ ( 0 )  = To and TI (=) = T 1 1' 

-.- 
'C' SY 

,-mz$aw 
%, 

*.%?Ti 3 
~ . .  

- '- 



For CS(o, t )  the  condition^ considered a re  C (0, t) = c , usually taken C (T ). 
C 1 s 2 

o r  at times a condition conserving mass between 0 and =, 

Our two approaches may be designated as  analytic and numerical. The numerical 

approach can be applied to all three conditions on temperature, whereas the analytic 

approach holds only the case of constant temperature instantaneously applied. A variant 

of the analytic method, i, e., applying linearly varying temperature, should be investi- 

gated. 

Section 3. THE ANALYTIC SOLUTION 

A similiarity solutiou can be written In the form 

T = Tl + (Ti - TI) erf 
8 (50b) 

T = T + (Ti - T ) erfc (x/2a 
G 0 0 

( 5 0 ~ )  

erfc ( x / q ) / e r f c  ( 5 k )  

The quantities Ti and R a re  determined from the boundary conditions. It is clear that, 

if T +T2 = f-' (C ), then there is  no solidification, C (x, t)  = C , and T (x, t )  = 
1 C 0 1 0 1 

To t (TI - T ) erfc  (x/2a $1. The solution given above satisfies boundary conditions 
0 4. 

(49a, b, c), and equations (49f) and (49g) a re  employed to determine P, and T a s  
i 

follows (Rubens tein, 1971): 



Substituting in Eq (49f) and (49g). eliminating the factor - , and replacing x by y(t) and 

~ ( t )  by 2 a& we get : 
8 -- - - 02 
2 2 

ks ( T ~  - T ~ )  e kt ( T ~  - T ~ )  e 
PVB = + a s F e r f  @/a8) a 4. @ erfc @/a2) 

By rewriting Eq (51f) solving for Ti, we get 

L 
2 

2 - h  
a a 2 2 

~ P Y B ~  erfc a a erf (@/as) + Tlk8a,e 1. as C e 1 erfc @/al) +Tokfs erf 
Ti = 

2 " 2 - 2 erf(@/a.) + k I S  a erf (./as! (51h) 
a .: [. 8 a fi e fi a @  



3.1 NUMERICAL METHOD FOR THE ANALYTIC SOLUTION 

The successful method for solving the pair of equations (51g) and (51h) involved 

starting with an arbitrary (usual small)  value for @. Substituting in Eq (5lh) gave a 

value for T and using the values for B and Ti  i s  the right-hand side of Eq (51h) and 
i* 

in the multiplier of 8 gave a new value for P .  This value was checked against the 

previous value, and if they agreed to a desired accuracy the solution was accepted. 

Otherwise, the two values were averaged and the procedure repeated. Failure of the 

procedure to converge after a reasonable number of itcT-qtions suggested that a dif- 

ferent starting value be tried. Sometimes, i terates which failed to converge suggest a 

better starting value: if they diverge immediately t ry  a smaller value, and if they 

oscillate t ry  a value close to the point about which they seem to oscillate. 

A modification of the analytic method, based upon the assumption that B need not 

be  constant and that T, also varies, has been included in the program. The assumption 
1 2 J 

i s  that ~ ( t )  = 2 B(t)$, where ~ ( t )  = po + bit + p2t + . . . B. J t and 

This procedure was originally used to  determine whether solutions of this more complex 

form existed, but was inconclusive because the values of the higher-term coefficients 

were sufficiently small  to be explained away by computation e r ror .  However, this pro- 

cedure may be useful in connection with a solution to  the more realistic problem where 

T (t)  i s  variable. This i s  yet to be investigated. 
1 

where 

The method of solution follows lines similar to  those given above. 



First ,  assume initial e ~ t i m a t e s  of Po, . . . , . , B and values of t = 0, At, . . . . . , 
j 

j bt .  Next, determine values of Ti(t) and B(t) by substituting into (51g) and (Slh), taking 

care  to replace 0 by B in those terms obtained from the derivative. Using the va!ues 
d 

of B (t), we can find the coefficients by solving a linear system; these coeffic:-&hi can 

then be compared with the previous estimates. If they agree, we can find the values of 

Ti(t) for the coefficients Tie, . . . . , Ti). If they do not agree to the required accuracy, 

the coefficients of $ (t) a r e  averaged and the process repeated. To find estimates for the 

starting values PO, B1, . . . , we f irs t  solve for 1-1 and use the coefficients so  obtained 

as a first  estimate for j, with 0. se t  equal to -6 * .001. Thus, we solve a sequence 
J j -1 

of problems j = 0, 1, . . . , up to the desired value of j. The numerical results using this 

technique has been good, although its application to the case of constant T has not been 
1 

fruitful. 

The only boundary condition for C (o,t), discussed above, has been Cs(o, t )  = 59 s 
a constant for all t. A variant condition is one based upon conservation of solute: 

Using the expressions for C and C in the analytic solution (Eq 50 c, d), we have 
8 1. 

fs(Ti) - C1 Y(t) - Co 
( c ~ - c o ) ~ ( t )  + ' e r f q  J (x/2m)a + e r f c  ly/Z 

m 
s 7) 

1 -u 2 
( e r f c  v ci v = - u  erfc  u + - 
u fie 



we obtain the relation 

By comparing this condition with Eq (49g), we have 

For  the case where y(t) = 2@J, y(t) = 2t$(t) and the condition i s  f (T ) - C = 0. This s 1 1 
means that the concentration of the solid solute at x = 0 is  the same a s  the concentration 

at the interface, and hence the concentration of the solute in the solid is constant every- 
ac 

where. This is equivalent to the condition given by Rubinstein (1971): = 0 at x = 0, 
ax 

which implies that C1 = f (T ). However, if (y(t) - 2t;r(t) i s  not zero, f ( T  ) - C can be 
s i s i  1 

computed to determine C at every time interval. 
1 

The program for computing temperature and concentrations for the solidification 

of a binary alloy system is named BISCL. BISCL employs a subroutine BETTI to deter- 

mine the values of 0 and T The main program computes, for each instant of time t ,  
i' 

y(t), k t ) .  Tip fs(Ti), and f (T ) and then, for each (x, t). T (x, t )  and c(x, t). The spacing 
4, i 

for x may be equal; j d x for j = 0.1,. . . .Ix-1 given by IAM = 0, o r  O,Z'-'AX for j = 1, 

. . . , Ix-1 where A x given by DELY and IAM = 1. To compute fs(Ti) and fl(Ti), the pointa 

on the solidus and liquidus curve a r e  input a s  a table of trip!ets (T, fB, fi),  and 

LagrangIan interpolation is used to interpolate between tabular points. The number of 

interpolating points L i s  less  than o r  equal to the number of triplets IF. The time inter- 

vals a r e  equal, given by DELP, and a r e  terminated when time exceeds TF. The n ~ m b e r  

of iterations permitted before the program was stopped for further iteration is given by 



f NIT. The number of coefficients of 8 (t) = Po + Dl t + . . . . P t i s  given by KT = j + 1. 
j 

In the ordinary case, KT = 1. To determine the f i rs t  approximation of 8, ihe quantity 

FRX i s  multiplied by DELX, In the case of a failure to converge, an e r r o r  indicator is 

se t  in BETTI and tested in t k  main program permitting a change in FRX. If FRX i s  se t  

to zero, the program will stop. As a boundary condition at Cs(o, t )  if Cl >O is  input, this 

is  held constant. If C = 0, then it will assume a conservation of solute concentration 
1 

and compute C1 in the program a s  required (see above). a is designated by AS, a by 
8 1 

AL, D by DS. D by GL, To by TO, TI by T I ,  Co by CO, Ks by KXS, k by XKL, p by 
s a L 

RHO, and Y by GAMMA. Quantities needed by BETTI and BISCL a r e  transmitted by n 

common statement. 

3.2 GLOSSARY 

The following i s  a glossary of additional terms used by the program. 

S T  - q 
BETA - 0 

BETH - Bd 

TMIN - Ti 

AST -* 2 D $ 
8 

ALT - 2 aL,JT 

DST 2@7< 

DLT - 2 , F E  

YAST - Y T /AST 

FAST - er f  (YAST) 

YDST - YT/DST 

FDST - erf (YOST) 

YALT - YT/ALT 

FALT - erfc  (YALT) 

YDLT - YT/DLT 

FDLT - erfc (YDLT) 

FLT - fl(TMIN) 

FST - fB (TMIN) 

FLTC - FLT-CO 

FSTC - FST-Cl 

TEMP - T(x,t)  

CN - C(x,t) 



Section 4. THE NUMERICAL APPROACH TO SOLIDIFICATION 

In order to solve the solidification problem numerically, we devised a technique 

for separating the two major aspects of the computation. O?e aspect inv:,ives tile deter- 

mination of the moving interface boundary, x = y(t), and also the interface temperature, 

Ti; the otber aspect concerns t:ie determination of the temperatures, T, and concen- 

trations, C8 and C e  on both sides of the interface. Although it is  clear that the iwo a r e  

interconnected for computation purposes, we first  extrapolated for a new set of tem- 

peratures and concentrations at the mesh points, then determined the interface point 

and temperature, and finally recomputed the temperature and concentratioqs based upon 

the interface point and temperature. In case of a failure to converge quickly to the inter- 

face point and temperature, we interposed new values of the temperatures and concen- 

trations at the mesh points to help expedite the proces.3. With this general strategy in 

mind, w e  shall explain in detail the various aspects of !he program. 

4.1 THE INTERFACE PROCEDURE 

At t i i ~ e  t, we computed the values of T(x, t )  and c(x,t) at the mesh points and the 

values of y(t), i ( t ) ,  and T (t). In addition, we obtained the values of T(x, t + b t )  and i 
c(x, t + h t )  for all  mesh points by extrapolation, and approximated y(t + A t) ,  i ( t  + A t), 

and T (t + At). We next computed f [Ti(t + A t )  ] and fl(t + dt ) ] f rom a LaiVangia inter- 
i s 

polation on the solidus and liquidus curves. Recognizing that the interface point and tem- 

perature a r e  crucially linked with the values of temperatures and concentrations of the 

adjoining mesh points, we recomputed the values of C and T at these points using a 

difference form of the partial differential equations. 

Based upon the values of the concentrations at  the interface and the adjoining mesh 

points, we computed the partial derivatives - a C4 and - and determined $(t At) from 
a x  a x  

the boundary condition Eq (49f). Substituting in Eq (49g), we determined a new value for 

the Interface temperature. When the values of the interface derivative and temperature 

agreed sufficiently with the previous estimates, these values were accepted and y(t + At) 

ie determined From y(t + At) = y(t) + 4 ( i ( t )  + ?(t + dt) ]  bt. With y(t + At), T (t + At), 
i 



, - 

e, 4: I 9 

and the values of concentrations and temperatures at the adjoining points determined, we 

computed fa p i ( t  + b tj] and fI [ ~ ~ ( t  + At)] and solved for the temperature and concen- 

trations at the other mesh points. If y(t + A t)  and Ti(t + At) did not agree sufficiently, 

we averaged them and the iteration repeated. If conversion was not achieved after a 

! 11 designated number of iterations, new values for the mesh points a re  determined. If 
i 
1 convergence was not achieved after a similar number of iterations, we halved interval 
i r . 1  At At ,it At 
; ! ,  At and determined values for T(x, t + 1). ~ ( x ,  t + 2). y(t + 1 ), dtt * -F), and 

At Ti(t + -) by interpolation. The process was repeated until convergence was ~t ta ined 2 
? - , r  , , or  the time interval cut down below an acceptable level. In the latter case, the program 
i! 
2 . .. either accepts the values attained o r  i s  stopped. An additional device which aided in 
P. ! , !  

1 k 1 :  * ' 
inducing convergence was based an a check of montonicity. The temperature must 

, ! 

. . monotonically increase from x - 0 to x = =, as  must the interface temperature. Thus, 

.,. if values that violated this monotonicity appeared, they were replaced by those found b t  

linear iiiterpolation. Similarly, ths concentrations in the liquid will decrease from 
\. x = y(t) to x = - . A monotonic behav~or, either nonincreasing o r  nondecreasing in the 

solid phase depenti~ng upon the condition upon C' (0, t), cm also be expected. s 

The values of the concentrations and temperatures for the mesh points adjoining 
. - , . . I the interface point were also determined using this iteration process, Although con- 
t 1 

vergence checks were not made on concentration and temperature values it is  clear that, 

i / i  since these values ultiinately involved in the expressions for computiirg the interface , i < 

derivative and temperature, their failure to converge w add  have prevented the con- 
* : 

. i i . j  vergence of the derivative and interface temperature. 
. ' {  ; j . . 
. ,  

i . , 40 2 NUMERICAL APPROXIMATIONS 

In order to determine the values of j t t  + At) and Ti(t t At) f w m  the b0Wd.r~ 
1 

-;1 - : , i  conditions at the interface, one must have a means for approximating partial derivatives 
. L 

, I . ;  of the form , where u i~ a function of x and t. In addition, computation of the con- 
b x  

4 ..i centration8 and temperature8 at the adjoining mesh points require approximations for 
2 

exprer8ion8 of the form aU .ad 9 . We have a l r e d y  indicated that y(t + At) is  found 
at :,x 



from y(t + At) = y(t) + $(t) + i ( t  + At) At, sometimes callcd the modified Euler 

equation. Although this i s  a lower-order method than the usual Runge-Kutta employed 

by other researchers in similar situations, it i s  preferable here because i ( t )  i s  computed 

by an elaborate iterative scheme. Runge-Kutta involves the use of intermediate values 

of $(t), which would have to be computed in the same complicated manner. Only when 

explicit expressions a r e  available for $it) c m  Runge-iiutta be recommended. 

The expressions for the partial derivatives are base clpon difference expressions, 

assuming unequal spacing, because the presence of a vary,,ig interfax! point requires 

approximations involving the values at this point. Although economies in computing a r e  

available if the subdivisions of the mesh a r e  equispaced, they must be sacrificed because 

of the varying interface point. To  require that the interface points be at  mesh points 

would necessitate a variable time step and a very small space interval in order that 

gi 
convergence on and Ti be reached after reasonable number of iterations. In addition, 

. -F 
.. @ the semi-infinite character of the problem, with little change in variables away from the 
. f 

s origin, suggests that the space intervals increase in size. To accommodate such a 
, k  situation, the key expression for the partial derivative at x = x is given by , h 
\ f 

1 

B u(xl + k, t) - u(xl - Ax, t)  
' F 2A x i. e., by a second order approximat ion. Thus, 
8 

u(x2t t)  - u(xl, t) X + x  
a u  i s  an approximation for at x = 

1 2  - 2 
. Similarly, !he 

:. 5 "2 - s1 o x  

r 2 
expressions for - a " based upon the value8 of u(x t), u(x2, t), and u(x3, t) is  given by 2 

ax 
1' 

As a consequence, if the partial * at x = xl is  required for given values at x 
ax 1' X2g 

u(x), t)  - U(X1, t) X - X 2 
and x3, the formula (E) = X - X  + au is  used, where 

X 2 1 2 
ijx 

2 
1 



a6u - 
2 Is computed as above and gives second-order accurate results. An arithmetic 

a x  

function statement of the form D2(X, F.Y.G. Z , H )  = ((H-G)/(Z-Y)-(G-F)/(Y-x))/(Z-~)/2) 
n 

aLu is used to compute - 
2 

using the s ix quantities 5. u ( 5 ,  t), x2, u(x2, 1). x3 and 
3 x  

a u  a u  
We use a similar  approach to interpret - - i s  approximated by 

a t  a t  n 

~ ( 8 ,  t+At) - ulx, t)  4 t , evaluated a t  t + p . 
A t  

Thus. the equatim )u = 
a" u 
q2 

at a x  

U(X, t + At) - U(X, t )  - 
At 

i s  approx- 

2 
Here 

A t  h'L_ a t  t + - has been replaced by the average of the values at t end t + At. This 
a x  

2 
9 

at t +At is called the Cnmk-Nicholson method (Ref. 81). Since the evaluation of 7 
3 x  

involves the values of u(x. t + At) a t  three values of x, this equation has three unknowns. 

3 %  However. as an iterative method, one e m  assume the values needed for 7 are known 
ax 

and use the equation to find ail improved valrle for rtfx, t A At). In this \cay i l i ~  ~ ' d t i c f ;  d l  

the concentrations and temperatures at the interface-adjoining mesh points are determined. 

This i s  a reasonable approach since many iterations may be required to compute 

4.(t + At) and Ti(t + At). 

Evaluation of &t + 4 t)  ra obtained fro!n 

The partials are evaluated from the formula for . To find an iterate of Ti(t + A t )  in 
ax 



a Ts a T ~  
t h e e q u a t i o n ~ v j ( t  + A ~ ) = K ~  - K - 

a x  
with partials at t + At, we replace 

a Ts x - y(t + At) - Ti - T. + j - a 2 T  aTd 
by y(t +At) - x 2 2 

; and - 
b x  

j bx  
ax 

+ 
2 

, where the subscripts j and j-1 indicate the mesh 

1-1 
point ttftet ~ n r l  h ~ f ~ r o  ?!I? ~;I:CZ~SCC yuiirt, respectively. W e  can solve for T excepting 

i' 

the T. terms involved in - 
1 

(: 1;) and (9) . TMS gives m iterative formula for 

i -1  
T (t + At). We see that the values of concentrations and temperatures at the j and j-1 

i 
points play an important r o b  in determining (t  + A t )  and T.(t + At 1, and their convergence 

1 

presumes the convergence of the four other values. 

4.3 THE SOLUTION FOR REMAINING MESH POINTS 

When the v~lues of interface derivative and temperature converged, w e  determined 

the interface point and concentrations of liquid and solid at the interface. T h e  vahtes for 

the concentrations and temperatures must then be computed for the remaining mesh points. 

To determine these values, four systems of equations, one each for conceotrations and 

temperatures for each side of the interface point, must be solved. Since the values on the 

infinite side of the interface point change gradually, one need not consider too many mesh 

points. By starting with a small number of points, chosen so  that the la& f ew show no 

change from the initial values of Co and To, the number of points is  increased whenever 

the values at the pentultimate point shows some nontrivial chsngc;, The flew points again 

have values C and To. The values C (0, t )  and T (0, t )  a re  determined from the initial 
0 8 s 

conditions so  that they, too, ,:re already known. The values of Cs(xj-l, t )  and Ts(~j - l ,  t), 

where j-1 indicates the mesh point before the interface point, and the values of C (x t )  
4, 1' 

and T (x , t), where j indicates the mesh p i n t  after the interface, are also known from " 
the iterative process. 'At each of the interior points, the Crank-Nicholson equation 

involves the values at three mesh points: before, at, and after the point for which the 



equrrtinn ils given. Each systcm of equAtiorte i~ not only h e a r  (since the coefficient nf 
r) 

- a'u i, assumed constant), u t  a+o tridingonul. A ruhrouline (TRIST) is used to set up 
2 

a x  
f the coefficients of each of the systems and calls upon a standard Grumman subroutine 

, -  
, : (TRIDI) to solve them. 

1 - :  
The same procedure i s  used when convergence has not been achieved and an 

updated set  

iterations. 

df values for concentrations and temperatures a r e  desired for continuing the 
2 

3 u This need results because the expressions for -2 
at j - 1 o r  j depend not 

a x  
u::!;. on tkc psinte SiiSs~~i i i icd Ly j-i j but also on those whose subscripts a r e  j-2 

and j+l. 

4.4 STARTING PROCEDURES 

The previous discussion assumes that y(t), i ( t ) ,  T(t),  and isii vaiues oi ~ ( x ,  t )  

and T(x,t) at the mesh points are known, and that first  approximations a r e  available 

for  time t+At. However, all we know at time t = 0 i s  that y(0) = 0, but we have no 

knowledge of i (0 )  and T.(O). Indeed, it may even be ture that no solidification begins a t  
I 

time t = 0, because the temperatr~re at x = f3 may be above thc temperature T at which 
2 

solidification can begin for the given initial concentration C . In  the latter case, until 
0 

the sur9aca Lamprature reaches T the problem is  that of pure heat conduction, and for 
2 

each time interyal one solves a single tridiagonal system. After each interval, we 

ascertain whether tlw temperature at  the pentultirnate point has changed nontrivally s o  

inat points should be added to the mesh. 

However, when the temperature at the surface is below T solidification occurs 
2 

and, hence, a need ar i ses  for  a starting procedure to determine i ( t )  and T.(t). An 
1 

appreciation of the problems involved can be gained from the analytic solution for the 

case of constant surface temperature. In this case, as was discussed ear l ier ,  y=2@ f i  
j. = 3. and 1' interface temperature i s  constant at  T Then j ( 0 )  i s  infinite and, hence, 

i' 
no value that will give useful results can be assigned to $(o). One way to begin the 

numerical problem is to assume that the analytic solution holds at  least for the first  time 

interval. This would only be ubeful for the caso of conslant surface temperature, In 

addition, the purpose of the analytic solution, i.e., to check the accuracy of the numerical 



solution, would lose some of its validity. A s  an alternative, w;. may use ~ U I I W  aspects 

of the analytic solution to assist  in starting thc solution. One such aspect ii; that 

y(t) = 29(t) . t. This enables us to estimate y(t) if an approximation of * is given. 
dt 

However, having no value to Ti and y at t = At to begin with, wo have nc means of 

computing * using boundary equation (49f). As a variant, we may begin with an initial 
dt 

sstimate of by, determine T: by assuming a linear law for temperature from x = 0 to 
L 

9 C 
L J &  . S 

b C 
- - t 

x = 2Ax, and determine At from = (Ks - K --- At dt a x  4, a x  ) + [$(Ti) - f iTi ) ]  

From this At, one finds another which i s  of the form D E L T / ~ ~  and less  than previo-1s 

n t, where DE LT i s  an input to the program. A corresponding value for y(A t), T(Ax, A t )  

i s  estimated linearly. From then on, the iteratives continue in the usual manner, except 

that y i s  computed a s  2y At. Convergence occurs, o r  else At is cut back. The next 

time step no longer requires a special starting procedure. It is useful to choose the 

original by somewhere between 4 and of thc length of the first  space interval A X. 

This removes y f a r  enough from the mesh points to make the differences meaningful. 

1.5 PROBLEMS CAUSED BY INTERFACE APPROACHING MESH POINT 

One of the greoiest obstacles in the development of the program occurred when 

the interface point approached a mcsh point. The time interval was halved, down to the 

limit, until it failed to converge for  the smallest interval allowable. Relaxing the 

minimum time interval resulted in the use of an inordinate amelfit cf c c x p ~ t z r  :imo, 

nor did it always succeed in breaking through this mesh point barrier.  In  addition, djs- 

continuities in interface derivauve and interface temperature appeared after the mesh 

point was passed. There ulas a tendency to correct itself, however. Hence the dis- 

continuity due to the definition of the partial derivatives with respect to different points 

was an unavoidable but self-disappearing evil. 

The f i rs t  solution to the mesh point approach problem was the development of an 

extrapolation procedure whenever the interface point neared the mesh point. For 

example, when the interface traversed 9/10 of the mesh width, the results of the lnst 

two points were extrapolated linearly to the mesh point. This carried the program 

Lhrough the difficulty with only a small  e r r o r  due to linear extrapolation. 



g>; 
zr  e Another solution to the approach problerri was to change those points adjoining 

the interface point. Whenever the interface point came within an input fraction ( 1 4 )  

of the mesh width, the adjoining point on the infinite side was shifted to the next point for 

all iteration considerations and the values of concentration and temperature at the skipped 

8 ,  8 ;  1 .  . . point were determined by a linear interpolation from the interface point to the assumed 

8 i adjoining point. On the other hand, the adjoining point on the zero-side of the interface 
% I : .  - 

0; 

I ,. ' was not shifted until the interface point had passed a distance a ratio S of the mesh width. 
% I i  

I : .  For example, if S = .15 and the interface point was .85 A x, the adjoining point on the 
5. ; 
. . infinite side was shifted; and when it was 1.15 Ax. the adioining. point nr? tkc n;:; ~i22 

$ ; ; :  was shifted. With this strategy, extrapolation was replaced by linear interpolation for 
p: - * 
& 

the skipped point. Of course, a change in reference points m d e  for discontinuities in 
- .  _ -  . derivative and interface temperature, but they seemed less  severe and were quickly 

T ,  
corrected as the interface moved away from the critical region around the mesh point. 

4.6 TIME INTERVAL CONTROL 
i. 

As indicated in the program, the time interval i s  subject to variation. The program 

allows for large time intervals when convergence occurs quickly, and smaller intervals 

when convergence i s  slow. The two factors are the initial DELT and the number of 

iterations NIT. DELT represents the largest allowable time interval, and DE LT/128 i s  

the smallest. If the number of iterations to convergence is less  than o r  equal to 

NTT/4 then, for the sext tfma interval, a tiiiie step ttvite a s  l u g e  16 permitted. If, 

on the other hand, after NIT/2 iterations no convergence has been achieved, then the 

time interval for the current step is halved, if allowable, and maintained for the next 

step. If after NIT iterations no convergence has occurred, then the step size is halved 

again, if allowable, and iteration count restored to NIT/2 + 1. If it i s  not allowable, the 

program may stop o r  accept nonconvergent results as set by input. Another situation 

leuding to s tep halving i s  the occurrance of a negative . Since this is not physically 
d t 

realizable, it i s  assumed that the time step being used is too large, and a smaller on? 

substituted for accurate results. 

Another option that may affect timc interval control i s  the desire  to print results 

at  fixed intervals. Thus, if results are required a t  an instant of time of t + At exceeds 



that time, then A t  i s  ndj11gfed SO that C + h l  will be exactly as required. Also, for  the 

programs where the surface temperature i s  vsrittblc and no solidifIci~tiu11 lakes: place 

until temperature T is reached, then the solidification time is used by the program for 
2 

computation. If this i s  not the desired time for printout. the user  will not be aware of 

!hest? results. 

Section 5. COMPUTER PROGRAMS FOR NUMERICAL SOLUTIONS 

Four main programs have been developed in accordance with the ideas described 

above. Two programs solve thc coiislwt surface temperature problem, one (B INCR 3) 

usmg extrapolation to the mesh point and the other (B INCR 2)  using the shifting of 

adjoining point method. The other two programs both use the shifting of adjoining points 

to solve for the linear surface temperature (B INCR) and the experimental surface tem- 

perature (B INCR 4). These four main programs use the same subroutines: MOTON to 

preserve monotomicity, and TRTST to se t  up md solve tridiagonal systems. In all  four 

programs, the solidus and liquidus curves a r e  input in the table manner a s  discussed in 

BISCL. Also, the mesh points a r e  set up in the same way a s  in BISCL. 

The results in Tables 3-1 through 3-3 were obtained using BISCL for the analytic 

solution of the solidification of 12% Sn in Ni, with an instantaneous change of surface tem- 
0 p r a t u r e  from 1800 K to 1 4 0 0 ' ~  at  time t = 0. The Ni-Sn phase diagram is from Hansen 

(1958), while material property data was from Smithells (1968). The coefficient of 
2 9 2 3 

0 ( t ) = B o + \ t + P 2 t  +Pgt  a n d T i ( t ) = T i o + T  t + T .  t + T .  t nregiven. Thevalues 
i l  12 13 

of interface point, interface derivative, and interface temperature a r e  given for times 

t = .03125 sec  to 1 sec, a t  intervals of .03125 sec. The values of T(x, t )  and C(x, t )  a r e  

given for t = .03126 sec, .0625 sec, and 1 sec. 



TABLE 3-1 COMPUTED SOLIDIFICATION O F  12% Sn IN Ni, 
ACCORDING TO THE ANALYTIC SOLUTION(Sheet 1 of 2) 

0.100000E-01 0.1493603 04 0.5987023-01 
0.200000E-01 0.1579563 04 0.195808E 00 
0.400000E-01 0.1693783 04 0.139609E 00 
0.800000E-01 0.1787793 04 0.1202463 00 
0.160000E 00 0.179999E 04 0.120000E 00 
0.320000E 00 0.180000E 04 0.120000E 00 
0.640000E 00 0.180000E 04 0.120000E 00 
0.12ROOOE 01 0.180000E 04 0.120000E 00 
0.256000E 01 0.180000E 04 0.120000E 00 
0.512000E 01 0.180000E 04 0.120000E 00 
0.102400E 02 0.180000E 04 0.120000E 00 
0.204800E 02 0.180000E 04 0.120000E 00 
U. 409600E 0.180000E 04 1 0.120000E 00 

TIME-t ~ ( t )  90) Ti(t) 

0,270028E-01 0.215984E 00 0.157332E 04 

0.0 
0.100000E-01 
0.200000E-01 
0.400000E-01 
0.800000E-01 
0.160000E 00 
0.320000E 00 
0.640000E 00 
0.128 000E 01 
0.2560003 01 
0.512000E 01 
0.1.0240OE 02 
0.2048003 02 
0.4096003 02 

0.140000E 04 
0.1466573 04 
0.1530833 04 
0.1632696 04 
0.175121E 04 
0.170905E 04 
0.180003E 04 
0,180000E 04 
0.18 0000E 04 
0.180000E 04 
0.1SOOOOE 0.1 
O.lFbQ00E 04 
0.18 OOOOE 04 
0.180000E 04 

0.333330E-01 
0.5974973-01 
0.5987383-01 
0.1661433 00 
0.124121E 00 
0.120001E 00 
0.120000E 00 
0.120000E 00 
0.120000E 00 
0.120000E 00 
0.120000E 00 
0.120000E 00 
0.120000E 00 
0.120000E 00 

i 



TABLE 3-1 COMPUTED SOLIDIFICATION O F  12% Sn IN Ni,  ACCORDING TO THE 

0.1875003 00 0.4676283-01 0.1246493 00 0.1573303 04 
0.2187503 00 0.505080E-01 0.1153953 00 0.1573293 04 
0.250000E 00 0.5399363-01 0.1079353 00 0.15?329E 04 
0.2812503 00 0.5726723-01 0.1017573 00 0.1573293 04 
0.3125003 00 0.6036333-01 0.9653083-01 0.1573283 04 
0.3437503 00 0.6330793-01 0.9203493-01 0.1573283 04 
0.3750003 OG 0.6612143-01 0.8811373-01 0.1573283 04 
~.iGii25GE GG 3.606i36E-01 u. a4borul-ul  U. 157328E lJ4 
0.4375003 00 0.7141633-01 0.8157273-01 
0.468750E 00 0.739214E-01 0.788048E-01 0.1573273 04 
0.500000E 00 0.7634433-01 0.7630063-01 0.157327E 04 
0.5312503 00 0.7869263-01 0.7402073-01 0.1573273 04 
0.5625003 00 0.8097263-01 0.719334E-01 0.157326E 04 
0.5937503 00 0.8319013-01 0.7001303-01 0.157326E 04 
0.625000E 00 0.8534993-01 0.6823823-01 0.1573263 04 
0.656250E 00 0.8745633-01 0.6659143-01 0.1573263 04 
0.6875003 00 0.8951313-01 0.6505793-01 0.1573253 04 
0.7187503 00 0.9152353-01 0.6362503-01 0.1573253 04 
0.750000E 00 0.9349053-01 0.622823E-01 0.1573253 04 
0.7812503 00 0.9541703-01 0.61 22033-01 0.1573253 04 
0.8125003 00 0.9730513-01 0.5983123-01 0.1573253 04 
0.8437503 00 0.9915713-01 0.5870823-01 0.1573253 04 
0.8750003 00 0.1009753 00 0.5764513-01 0.1573243 04 
0.9062503 00 0.1027603 00 0.5663683-01 0.1573243 04 
0.9315003 00 0.1045153 00 0.5567853-01 0.1573243 04 

1 

3-20 

X 
0.0 
0.100000E-01 
0,200000E-01 
0.4000003-01 
0.8000003-01 
0.130000E 00 
0.320000E 00 
0.640000E 00 
0.1280003 01 
0.256000E 01 
0.512000E 01 
0.102400E 02 
0.204800E 02 
0.409600E 02 

T 
0.1400003 04 
0,1416743 04 
0.1433443 04 
0.1466583 04 
0.153085E 04 
0.163269E 04 
0.1751213 04 
0.1799053 04 
0.180000E 04 
0.180000E 04 
U.180000E 04 
0.180000E 04 
0.180000E 04 
0.180000E 04 

C 
1 

0.3333303-01 
0.4716413-01 
0,5572593-01 
0.5978153-91 
0.5990583-01 
0.1661673 00 
0.1242343 00 
0.120001E 00 
0.1200003 00 
0.1200003 00 
0,120000E 00 
0.1200003 OF 
0.120000E 00 
0.120000E 00 

D 



These results in Table 3-2 and Table 3-3 are :G be compared with those obtained 

by the numerical solution, B INCR 3, described above. The times are from .a625 sec 

to 1 s ec  in intervals of .06;25 sec. The values of T(x, t) and C(x, t )  are given at 

t = .00097653 sec, .0625 sec and 1 sec .  

TABLE 3-2 COMPUTED SOLIDIFICATION OF 12% Sn IN Ni, 
ACCORDING TO THE NU+dERICAL PROGRAM 



- 

TABLE 3-3 COMPUTED'SOLIDIFICATION OF 12% Sn IN Ni, COMPARISON BETWEEN 
ANALYTIC SOLUTION AND NUMERICAL PROGRAM 

The average accuracy of the numerically computed results in this example 

(12% Sn in Ni) is  only 3.12% off ths analytic values on the interfacial position y(t); 

only 1.90% on the velocity of solidification i ( t ) ;  and only 0.39% on the interfacial tem- 

perature Ti(t). 

T ~ m e ,  
t, s ec  

, 

0.25 

0.50 

0.75 

1.00 

Average 

Within the range of study, our numerical program is  therefore considered to be 

adequate for Rome applications to the solidification problem. 

Interface 
Position 

A Y ( ~ )  

1.24 

3.73 lo-" 

2.36 lo-' 

3.01 x lo-' 

2.58 x 10'~ 

Velocity of 
Solidification 

m 
yaw 

2.3% 

4.88% 

2.53% 

2.78'; 

3" 12%) 

A$(t) 

9.47 

- 7 . 2 4 x 1 0 - ~  
-4 

-6.20~10 

5.01 

0.26 x 

* 
Interface 

Temperature 

. A .  7RO/, 

-9.51% 

-1.00% 

9.31 

1.90%8 

A f ( t )  

5.63 

5.21 

7.60 

6.33 

6.19 

I 

ATi(t) - 
.f(t, 

0.56% 

0.339, 

0.48% 

0.40'3 

0.39% 



SUGGESTIONS FOR FUTURE WORK 

Section 1. IMPROVEMENT OF MODEL OF SOLIDIFICATION 

The preaent analytic model aseumes all the material parameters to be constant. 

Such parameters include: 

Specific heate 

Conductivities 

Latent heat of fusion 

a Diffueitfties 

Densities. 

In any real situation, theee parameters are  varying either as a function of  concentration^ 

o r  temperature, o r  both. By refining the program to account for such variations, we 

move toward a more accurate model. Even more significant, however, is the fact that 

we will have a tool for accurately weighing the role and efgnificance of each of the para- 

meters in the solidification process, both in one gravity and in zero gravity. 

The second in~provenlent Irr the model involves introduction of the evaporation 

'effects which were eo significant in work conducted during the firet part of the contract. 

We have already briefly discussed evaporation and the role it  plays In eolidification. 

Only by accounting for this effect can we clearly define the initial condition8 of the melt 

before solidification in order to ascertain zero gravity effects during eolidification. 

Finally, with the help of oeveral fluid8 speciallots in the Research Department at 

Grumman, we have begun to analyte the role of liquid metal fluid dynamics on eolidifi- 

cation, Even in zero gravity, there is coneiderable fluid motion brought about by forcer 

such a6 rurface tension, field effecta, etc., possibly resulting, wain, from evaporative 

segregation. We want to account for, in eome fashion, the effecta of such fluid motion 

on aolfdification. 



Section 2. EXPERIMENTAL CORRELATION 

Analytical programs are  a valuable part of the investigation and, for this reason, 

we want to use the programs at all stages of their development to aid in understanding 

solidification and segregation in zero gravity* Effects of initial and of boundary condi- 

tions, concentration range, etc., will also be systematically determined, 

In addition, we want to correlate the program with a very real semi-conductor 

material. Certain 111-V semiconductor compounds, such trs GaAs and Gap, form ideal 

candidates for single crystal growth in cpace because of their technical importance, 

stringent demand for perfection, and high cost. G a h ,  for example, is a high-mobility, 

temperature-stable material that has been wldely t sed  fn lasere, light emitters, Gunn 

microwave oecillators, and the 1j.k~. While these devices are  already perforniing 

numerous unique and important {unctions, their lives, performances, and reliabilities 

a re  usually material-limited. That is, the GaAe ntarting materials invariably contain 

too many physical and chemical defects in the farm of point, line, surface, massive, 

o r  spiral types. The oxigin and formative conditions of these defects have not been 

fully explained. A clear understanding of these defects is, therefore, an urgent require- 

ment for material improvement, 

Today, in manufacture, exact control of a compoundts stoichiometric composition 

is required, but it may have a phase diagram which is distinctly nonlinear. In addition, 

elemental As and P are  s o  evaporative relative to Ga as to make the required composi- 

tional control extremely difficult and nonreproducible. Yet, most conventional studiee 

comider neither the differential evaporative behavior of the constituenb nor the curva- 

tures of the relevent phase boundaries. For this reason, ws have placed major emphasis 

preciclely on these two important areas. 

GaAs is, therefore, an ideal caadidate material; it is susceptible to in-n:.t vement 

through we of analytical techniques. Our programa can begln to explah the formation 

of defect8 iu such a material and, therefore, be used to ascertain the effectivenesr of 



the epace environment in improving the material. Finally, the same programs will 

allow w to deviee improved Ca& t.;rlce growth procedures, 

Continuing a relationship mich ifas initiated on the current contract, Grumman 

wlll work in cooperation wit!! ::rs State Univereity of New Tork at Stony Brook in an 

effort to correlate our analytical efforts with experimental reeulte. Single c r y e t ~ l e  

will be grown at SUNY-SB under highly controlled canditione and carefully prepared 

etatiatical plans. These materiala wlll then be analyzed and meulta ursd to confirm 

findings obtained on the computer. 
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PART VI 

APPENDICES 

These Appendices contain all of the papers pertaining to this contract that 

were either published or suhrnitted for prhlicntion d u r i n ~  the c o n t r o ~ t  per: d .  Trvc 

papers were presented at the American Association for Crystal Growth Second 

Symposium in Princeton, New Jersey, in July 1972. 
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ABSTRACT 

The phenomenorl of evaporative segrega t ion i n  binary a 1  10::s has 

been invest igated through a study of some experimental evaporation 

data  r e l a t i n g  t o  the Ni-Cr and Ni-Fe systems. In  normal evap- 

ora t ion  i t  is sssumed t h a t  a )  the evaporating a l l o y  i s  always 

homogeneous, b) the vapor is i n s t a n t l y  removed, and c)  the a l l o y  

follows Raoult 's  l a w .  The so lu t ions  of the evaporation equations 

for the two most important cases a r e  picsentcd and e x p e r i m n t a l  

data a r e  analyzed with  these equations.  The d i f fe rence  between ob- 

served and ca lcu la ted  values of evaporation constants  l i e s  wi thin  

one order  of magnitude. This is su rp r i s ing  because of the major 

assumptions s t a t e d  above. Experimental r e s u l t s  have shown t h a t  

the  evaporation ti= t and f i n a l  so lu t e  concentrat ion m a r e  

logar i thmical ly  re la ted ,  fu r the r  supporting our evaporation equa - 
t ions .  I t  is fu r the r  shown t h a t  neglecting the nonlogarithrnic 

term i n  these evaporation equations may introduce cons idera  ble  

e r r o r s  i n  the ana lys i s .  
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DISCUSSION 

The phenomenon of evaporativc segrcga tion fn b ina ry  a I lays has 

been quant i ta t ively t reated by L i  (Refs. 1 ,2) .  By evaporative 

segregation, we mean solute  enrichment or  depletion i n  the evapo- 

r a t ing  a l loy  as a r e s u l t  of surface evaporation. 

The formalism of evaporative segregation i n  a l loys  works 

surpris ingly well f o r  the several  systems so f a r  studied, 

notwithstanding the several  major assumptions involved. In the 

present memorandum, we s h a l l  study only some experimental evapora- 

t ion data r e l a t ing  to  the N i - C r  and Ni-Fe systems, a s  reported 

by N. D. Obradovic e t  a l .  (Ref. 3).  SpeciEical.ly, w e  s h a l l  compute 

the degree and ratc of solute  enrichment o r  depletion i n  the evapo- 

r a t ing  source a t  d i f f e ren t  temperatures and evaporation times. 

In the treatment of the simple "normal" evaporation, i t  is 

assumed tha t  a )  the evaporating a l loy  is always homogeneous, 

b) the vapor is  ins tant ly  removed, and c) the a l loy  follows Raoultt s 

law. Such conditions e x i s t  o r  a r e  nearly approached in  an induction 

melt in vacuum o r  l iquid in space. The solutions of the relevant 

d i f f e r e n t i a l  equation for  the f o l l w i n g  two important cases a re  

(Ref. 2) :  

Case I: The solute is  much more evaporative than solvent,  

Lee., U >> V. Then the time to reach a f i n a l  concentration m 

is 

m - m  1 



where 

G1 - - No(l - mo)/AU (sec) 

2 U = evaporation r a t e  of the solute  in  tnol/cm /sec 

V = evaporation r a t e  of tho solvent in  mol/cm2/sec 

m = Fni t i a l  molar f rac t ion  of solute  
0 

m = firm1 molar f ract ion of solute  aftcr  time 
( in  sec) 

No - t o t a l  i n i t i a l  number of moles of both solvent 
and solute  

A = evaporating area i n  cm 2 

For nearly equal m and m (i .e . , rn 2 mo) , or  for  smll  
3 

m and mo ( i . .  m 2 m - 0 ) .  E q .  (1) reduces to  the following 
0 - 

logarithmic express ion : 

Case 11: The solvent is much more evaporative than solute ,  

e .  V >>U, then, 

where G2 = moNo/AV. Again, fo r  nearly equal m and mo ( i  . e . , 
m 2 mo) , Eq. (2) reduces to  a logarithmic expression very s imilar  

to ( la )  : 



G I s  a r e  the time constants of evaporation. For the  case 

when U >> V,  so lu t e  deplet ion takes place,  i . e . ,  m / m and, 
Y 0 

there fore ,  the logilrithmic term i n  the paren thesea is nega t Lve i I 
( t he  second term i n  t h e  parentheses is often ncgligi.blc hy compari- 

!I son with the logarithmic term) . Since the evaporation t ime , t , 
L must be pos i t ive .  G L  i s  negative,  G2 i s  always pos i t i ve .  

- 

2 The evapnra t ion r a t e  Ln mol/cm /sec f o r  so lu t e  and solvent  

is given by (Ref. 4 )  

k ' I 
! 

u 

P where 

K = 5.833 x loo5, a ,-onstant t o r  metals 

MU,MV - molecular weights of so lu t e  and s o l ~ e n t ,  
respec t ive ly  

T = evaporating temperature i n  "K 

Au,BU - evaporating constants  f o r  t h s  so lu t e  

Av,Bv - evaporating constants  t o r  the solvent .  

Obradovi c e t a l  . (Ref. 3) give the  f i n a l  so lu t e  concentrat ions 

f o r  Ni-Fe and N i - C r  a l l o y s  a f t e r  various evaporating times a t  

1600°C under various ambient pressures ,  a s  s h w n  i n  Tables 1 and 2 .  

These data have been analya~ld by means of Eqs . (1) and ( 2 ) ,  above. 

'Ihe so l a t e  and solvent  evaporuting constants ,  AU, BU, Av, and BV, 

are obtained from Ref. 4 .  
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Relevant data f o r  computation of the G I s  a r e  given b e l w :  

a) 60% Fe-40X N i  al loy: 

-6 2 
' ~ i  = 6.386 x 10 mol/cm /se,:; N = 0.7478 mal;  T = 1600°C; 

0 

-5 2 2 
' ~ e  = 1.081 x 10 . n m l / c m  /sec; A = 10.0 cm ; Case 11: U << V. 

b) 80% NI-20% C r  a l loy:  1 
2 

'cr = 3 . ' ~ i 9  x loo5 mol/cm :see; No = 0.7582 mol; T = 1600°C; 

-6 2 2 
' ~ i  

= 6.386 x 10 mol/cm /sec; A = 10.0 cm ; Case I: U >> V. 

It can be seen from Table 1 tha t  f o r  the Fe-Ni a l loy ,  the values 

of G21s are constant within one order of magnitude. The difference 

between observed and calculated values of G2 is a l s o  within one 

order of magnitude. This is  very surpris ing considering the f a c t  

tha t  elemental evaporation r a t e s  generally d i f f e r  by many orders of 

mgnitude. Also, the above analys is  is based on the assumptions of 

a )  the evaporating a l loy  is always homogeneous; b) ideal  solution 
! 

bdtavior (and the solutions here are highly concentrated!); c) the I 

vapor is ins tan t ly  removed. The experinrental data of Obradovic e t  a l .  

(Ref. 3) on the Fe - N i  sys tem shows no s ys tern t i c  dependence of 
evaporation k ine t ics  on pressure a s  one would expect, and suggests , 

i 
I large experimental e r ro r s ,  e r r o r s  in  measurements, o r  both. '1 

Table 2 a l s o  s h w s  the calculated and observed values of Gl's I I 
! 

f o r  the N i - C r  a l loy .  Here, a l so ,  the values of Glls a r e  almost 

constant, and the differences between the observed and calculated I 
1 

v r i u r r  oi Q18 s are smaii. 'me data on the N i - C r  system show 

so* posi t ive correlat ion be tween ambient pressure and the weight 

percent of chromium i n  the melt a f t e r  30 minutes. 



The values of computed G I s  a r e  constant within one order of 

magnitu.ie. In pa r t i cu la r ,  fo r  the Fe-Ni system, a t  ambient pres- 
3 sums  of 1, 30, 50, 200 (x 10 ) t o r r ,  these same values a r e  ac- 

curate t o  within 25 percent. Therefore, i n  some cases i t  is  de- 

s i r ab le  to  know these values to  within 20 percent of t h e i r  r e a l  

values. 

In Tables 1 and 2 the time constants G a s  have been calculated 

i n  two ways. F i r3 t ,  G I s  were calculated by using only the loga- 

ri thmic term. Next, the complete equation (1) o r  (2) involving 

both the logarithmic and nonlogarithmic terms was used. I t  i s  in- 

te res t ing  t o  note tha t  the r a t i o  of G t s  calculated in  two cases 

is constant and has an average value of 1.67 . 0.01 fo r  Fe-Ni 

a l l o y  and 1.26 f 0.005 fo r  the N i - C r  a l loy .  Mathemtically,  

t h i s  means tha t  f o r  the case U >> V ( in  N i - C r  a l loy)  

m - m  
In + - 0 

(1 - 1 - m) 

(1 - mo)ml 

m o ( l  - m) 1 
.I 

m - m  



and for  the case V >> U, i .e. ,  i n  Fe-Ni a l loy  

Experimental r e s u l t s  have shown tha t  the evaporation time t 

and the f i n a l  solute  concentration m a re  logarithmically r e l a t ed  

(Refs. 3,5), supporting our Eqs. (1) and (2).  However, these same 

equations indicate tha t  such re l a t ions  a r e  true only for  vas t ly  

d i f f e ren t  solvent and solute  evaporating r a t e s  , and, in  addi t ion,  

f o r  small i n i t i a l  and f i n a l  concentrations, m and m. These 
0 

same equations a l s o  a l l w  one t o  compute, e .g . ,  the ef fec t ive  evap- 

orat ing area,  A, the solute  o r  solvent evaporating r a t e s  U o r  

V, o r  the evaporating temperature T. Further, neglecting the 

nonlogarithmic second terms in  Eqs. (1) and (2) may introduce 

e r r o r s  i n  T, A, U, o r  V by 26 percent i n  the 80% Ni-20% C r  

case and 6 7 percent in  the 60% Fe -40% N i  case. 

m e  equations of normal evaporation can be made more r e a l i s t i c  

by introducing the concept of solvent-solute interact ion.  I f  one 

considers only f i rs t -order  correct ion,  then i t  can be shown t h a t  

the ideal  evaporation L :s of so lu tes  and solvents w i l l  be changed 

by a new fac to r  re la ted  t o  the a c t i v i t y  coefficient of the element 

i n  question. In other words, 



. . 2 .. _. . ..,. . I  r ,.L. . . , 

where ru, yv a r e  a c t i v i t y  coeff ic ients  of soluce and solvent,  

respectively,  assumed constant i n  the v ic in i ty  of mo; and u', V' 

a r e  ef fec t ive  evaporating r a t e s  of so lu tes  and solvents.  Using 

the a c t i v i t y  data of Fe-Ni a l l o y  (Ref. 6) a t  1600fiC, we have 

recalculated the values of G2. Now 

m n 
0 0 G; = 

where 

v' = yvv 

yv = ' ~ e  '0.977 fo r  60mol % F e  al loy .  

G; (cal)  = 0.4471 x lo* sec. 

f 1: On applying s imilar  f i r s t  -order correct  ion f o r  N i  -Cr  sys tern 

n- I;* (Ref. 7), the revised value of G1 becoms, 

+4 
G; (cal)  = 0.2138 x 10 s e c .  

These corrections,  while not very large,  do make a l i t t l e  b e t t e r  

agreement between calculated and experimnta 1 l y  observed G values . 
In conclusian, the simple normal evaporation approach seems 

t o  give f a i r l y  accurate and useful predictions,  even fo r  the highly 

concentrated N i - C r  and Fe-Ni a l loys .  

- 2  
f 
I 

: * 
,am . . ": B 
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The k ine t i c s  of evaporation i n  binary a l l oys  have been quant i -  

t a  t i v e l y  t rea ted  . The formalism s o  developed works surpr i s ing ly  

w e l l  f o r  several  systems so f a r  s tudied,  notwithstanding the sev- 

e r a l  major assumptions involved. In t h i s  memorandum, we have 

s tud ied  the kine t i c s  of pu r i f i ca t ion  of beryl1 ium through evapora - 
t i o n  data a c t u a l l y  acquired during vacuum induction melting. This 

s tudy  shows t h a t  normal evaporation equations a r e  genera l ly  v a l i d  

and useful  f o r  understanding the k i n e t i c s  of beryll ium p u r i f i c a t i o n .  

The normal evaporation ana lys i s  has been extended t o  cover cases 

of  l imi ted l i qu id  d i f fus ion .  I t  has been s h w n  t h a t  under steady- 

s t a t e  evaporation, the so lu t e  conceatra t i on  near the surface  may 

be up t o  six orders  of magnitude d i f f e r e n t  from the bulk concentra- 

t i o n .  Corrections f o r  l i r l i t ed  l i qu id  d i f fus ion  a r e  d e f i n i t e l y  

needed f o r  the  highly  evaporative so lu t e  elements, such a s  Zn, Mg, 

and Na, f o r  which the computed evaporation times a r e  improved by 

f i v e  orders  of magnitude. The commonly observed logarithmic r e l a  - 
t i on  between evaporation time and f i n a l  concentra t ion fu r the r  sup- 

po r t s  the v a l i d i t y  of our normal evaporation equations.  
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INTRODUCTION 

The k ine t i c s  of evaporation i n  binary a l l o y s  have been quant i -  

t a t i v e l y  t r ea t ed  lay C. H. Li (Refs. 1 ,2 ) .  The Formalism so devel-  

oped works surpr i s ing ly  w e l l  f o r  the  several  systems so far  s tud ied ,  

notwithstanding the severa l  major assumptions involved. Spec i f i -  

c a l l y ,  i n  t h i s  normal evaporation approach, i t  is assumed t h a t  

a) the evaporating a l l o y  is  always homogeneous in  composition, 

b) the a l l o y  follows Raou l t l s  law, and c) the vapor is i n s t a n t l y  

removed. In t h i s  work, we have s tudied the  k ine t i c s  of pur i -  

f i c a t i o n  of beryllium through evaporation data a c t u a l l y  acquired 

during vacuum induction melting by R.  F. Bunshah and R.  S .  Juntz 

(Ref. 3) .  



The d e t a i l s  of the vacuum induction me1 ting procedure a r e  as 

follows. Beryllium (SR grade flakes) in  the form of a cyl indr ica l  

compact was cruc i l le - f ree  induct ion melted under an ambient pres - 
sure of loo6 t o r r  . m e  cyl indrical  compact was 1-3/4 inches in  

diameter and 4 inches high, and weighed about 100-130 g.  Since 

the actual temperature of the me1 t was not known, for  the purpose 

of our computations, the temperature was assumed, for the sake of 

comparison, to  be 1500°C, a temperature conanonly used in  Be 

melting (Ref. 3). 



EQUATION OF NORMAL EVAPORATION 

The so lu t ions  of the k ine t i c  equations For two importoirt cases  

a r e  given i n  papers by Li  and Mukhdrjee e t  a l .  (Refs. 2,4). In 

Case I, the so lu te  evaporating r a t e ,  U, i s  much g r e a t e r  than the 

solvent  evaporating r a t e ,  V, i . e . ,  U >> V. The equation r e -  

l a t i n g  the evaporating time tl t o  f i n a l  concentrat ion,  m, i s ,  

f o r  t h i s  case,  

I (1  - m o b  m - m  
t l  = Cl l n  + 0 

mo(l - m )  (1  - mo)(l - 'I 
" 1 (1) 

and i n  Case 11 when U << V, the evaporation time is given as  

follows: 

where 

C2 -+Nomo/AV, and 

m,mo - mole f r ac t ions  of so lu te  a t  t - t and t - 0,  
respec t ive ly .  

G t s  a r e  the time constants  of  evaporation. For Case I when 

U >> V, so lu te  deplet ion takes place (or m .r m ) and, therefore ,  
0 

the  logarithmic term i n  the par:.ntheses i s  negative ( the second 

term i n  the  parentheses i s ,  f o r  smll values of m and mo, neg- 

l i g i b l e  by comparison with the logarithmic term). Since the evap- 

o ra t ing  ti- tl must be pos i t ive ,  GI must be negat ive .  C2, an 

the o t h e r  hand, is always pos i t ive .  



In Table 1 the tines ti, to  reach the f i n a l  concentrations I 
m from i n i t i a l  concentration mo (through evaporation from area A 

and with an i n i t i a l  t o t a l  of No moles of both solute  and solvent) 

f o r  each element i n  the melt have been compiled using Eqs. (1) and 

(2) above. In the table ,  the ideal  evaporation r a t e s  a t  temperature 

T°K of each ele~nent have been computed using the fc~rmula given in  

Ref, 5, v i z . ,  

for  the solute : 

and 

for  the solvent : 

where K - 5.833 x loo5 fo r  metals; AU, BU, Av, and Bv a re  

elemental evaporation constants given in Ref. 5; and the Mts a re  

molscular weights. 
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TYPES OF IMPURITIE 

Three types  o f  impur i t i e s  can Se dis t ingu i shed :  

Type I .  - The impur i t i e s  t h a t  have much higher  evapora t ing  

rates U than the  s o l v e n t  Be .  For these  i m p u r i t i e s ,  such as Zn, 

Na, and Mg, evapora t ion  Eq.  (1) should be used. 

Type 11. - The i m p u r i t i e s  t h a t  have much lower evapora t ing  

rates U than the s o l v e n t  Be,. For these  i m p u r i t i e s ,  such a s  Fe, 

C r ,  N i ,  Cu, T i ,  and S i ,  Eq. (2) should be used. 

Type 111. - The impuri ty t h a t  evapora tes  a t  about  the same 

rate as the  so lven t  Bc, i . e . ,  U 2  V. Only a s i n g l e  element ,  

A l ,  is i n  t h i s  group. For t h i s  impuri ty,  a d i f f e r e n t  evapora t ion  

equ;; t ion  i n  i n £  i n i  te series form should be used (Ref. 2) . 



PRELIMINARY DATA ANALYSIS 

Since the exact temperature of the me1 t was not known, the  

exac t  evaporation r a t e s  could not be computed. However, s ince  a l l  

the so lu te  and solvent  elements were evaporating from the same 

l iquid-gas in te r face  of 3 f ixed a rea  A f o r  the same length of t i m e ,  

w e  can compute, from the measured met s and m 1  s, the values of 

P, which is the product of the evaporating time and evaporation 

rate f o r  a given so lu t e  wi th  the help  of Eqs. (1) and ( 2 ) .  The 

value of P should be constant  f o r  a l l  the so lu t e s .  

idea 1 -N (1 - m )  (1 - mo)m m - m  
t; = tl = 

O i i n  + 0 

AUi 
i 

mo(l - m) (1 - m ) ( l  -mo) l  9 (4a) 

i idea l  - o m - m  - - + 0 tZui= t1 'i i A mo(l-m) ( l - m ) ( l - m o ) j  1 = p ? ( 4 )  

where ti is the c s  t imated evaporation time computed separate ly  
f o r  each element a t  the assumed temperature or 1 5 0 0 ' C .  Simi la r ly ,  

from Eq. (2) and thc idea l  e v a p o r a ~ b n  r a t e  01 the solvent  Vi a t  

the same temperature, w e  have: 

In Table L a r e  l i s t e d  the value of P 1  s f o r  each element. P 

is  defined,  a s  shown, such tha t  

P = t .  x Ui when V .  I Ui 
1 1 

P L  t i x  V when Vi ;ui . i 



I t  can be seen from Table 1 t h a t  P i s  almost cons tan t  f o r  the  low 

vapor pressure  (Type 11) impurit  ics except  f o r  copper.  

Because of  our  th ree  assumpt ions o i  ~lorlrw l cvapora t i 011, and 

because of  the  assumed evapora t ing  temperature of 1500' C, the 

c o m p ~ ~ t e d  values  of  
t i  

vary From element to elenlent,  even thoggh 

they  should be i d e n t i c a l l y  the same. The v a r i a t i o n s  i n  ti, how- 

e v e r ,  are not  ve ry  l a r g e  90 t h a t  the  equa t ions  presented  he re  a r e  

s t i l l  u s e f u l .  

The h igh  vapor pressure  (Type 1) impur i t i c s  (Mg , Na , Zn) 

a l s o  have uniform P va lues ,  which a r c  rough1 y one order of magni- 

tude h igher  than those f o r  the  low vapor p ressure  ('Type. 11) ele- 

ments. The negat ive  value of P f o r  alun~inum stlows t h a t  aluminum 

cannot be t r e a t e d  by E q s .  (1) and (2) because for t h i s  clcmc-nt 

U 2 V and a d i f f e r e n t  evapora t ion  equa t ion  i n  i n f i n i t e  s e r i e s  form 

should be used. 



STEADY-STATE EVAPORATION 

To explain  the  la rge  v a r i a t i o n  i n  P values among d i f f e r e n t  

types of  impurity elements, one should consider l imi ted l i qu id  d i f -  

tus ion.  The concept of e f f e c t i v e  evaporation r a t e s ,  U and Ve e  
upon reaching a s tcady-s t a t e  condit ion is now ir* troduced . 

P = t e V e  = constant  ( l a )  

'b 

ciVi = P - constant  = teVe 

where the sub scrip:.^ i r e f e r  t o  i dea l  o r  normal evaporation va l -  

ues, while the subscr ip t s  e r e f e r  t o  e f f e c t i v e  o r  nonnormal va l -  

ues. 

In the following paragraphs, the concept of "e w i l l  be de- 
v e loped. 

In n o m a l  e v . l ~ o r a  t i on ,  w e  assume t h a t  the cvapora t i ng  a1 loy 
- is always homogeneous, ! .e . ,  the l i qu id  d i f fus ion  constant  D i  - .I .  

But because of the  large (orders of magnitude) d i f fe rences  i n  

evaporation r a t e s  of elements, the surface  concen tra*i.on of the 

s o l u t e  ms i n  the  melt is not the  same a s  the  bulk concentrat ion 

m due t o  the  l imi ted l i qu id  d i f fu s ion .  Figure 1 dep ic t s  the  
0 

s i t u a t i o n  ( a t  t = 0) ( i . e . ,  i n i t i a l ) ,  and a f t e r  reaching s teady  

s t a t e s ,  f o r  the  case  U >> V. 

For U >> V, the evaporating surface  region soon becomes de- 

p le ted  of  so lu t e ,  and the surface  concentrat ion of the so lu t e ,  ms, 
w i l l  be d i f f e r e n t  from the  bulk concentrat ign,  m s p e c i f i c a l l y ,  

0' 

mS << mo. After  the i n i t i a l  t r ans i en t s ,  a s teadyos ta te  f o r  the 

a l l o y  sys  t e m  and evaporating condi tioris w.: 11 be reached. The steady- 



t l iqu id  t 1 iqu id 

Fig .  la I n i t i a l  S t a t e ,  Fig.  l b  Steady S t a t e ,  
t = O  t a ts 

state concentrat ion p r o f i l e  is shown i n  Fig. l b .  The equation of 

the p r o f i l e ,  i .e. ,  m versus x ,  can be derived according t o  a 

procedure used by T i l l e r  e t  a l .  (Ref. 6) i n  t h e i r  s tudy of f reez-  

i ng  wi th  l imi ted l i qu id  d i f fus ion ,  i . e . ,  

where the receding r a t e  R of the evaporating surface  can be com- 

puted from Ui, Vi, ms, Mu, Mv, and mater ia l  d e n s i t i e s .  

In s teady-s t a t e  , 

and 



$ ., Solving for  ms , 

Since 

where Ue is the effective evaporation r a t e  of the solute  due t o  

the change i n  surface concentration. Subst i tut ing the m from 
S 

Eq. (7) in  Eq. (8) gives 

Similarly, for  the case v >> U, 

Thus, Lt can be seen mathematicall-y tha t  Ve = U . This mans  e 
t h a t  i n  both cases, U >> V, o r  V << U, the e f fec t ive  value of 

U o r  V is the same. This equal i ty  means that  i n  the steady-sta re,  

the surface concentration ms does not change with time, a s  ex- 

pected. 

Now consider Eq. (7) i-r some d e t a i l .  Several cases can be 

distinguished; these a re  : 



1 . - U > > V  and m n o k m = O  

then 

.. . 
I then 

when 



then  

when 

The e f f ec t ive  evaporation r a t e  of the s o l u t e s ,  
ue , can be 

computed by E q .  ( 5 ) .  The e f f e c t i v e  evaporation r a t e s  have been 

var iab ly  r a i s ed  o r  lowered t o  e q u a l  the i d e a l  evaporation r a t e  of 

the  solvent  (Be). In the case of high vapor pressure impurit ies 

l i k e  Mg, Zn, Na, t h i s  means a lowering of evaporating r a t e s  by 

about f i v e  orders  of magnitude. 

The surface concentrat ion,  m , and the r a t i o  of surface t o  
S 

bulk concentrat ion have been computed i n  Table 1 by Eq.  ( 7 ) .  These 

r a t i o s  must a l s o  equal Vi/Ui.  NOW w e  have 

The e f f e c t i v e  time te t o  reach tile Final concentrat ions m 

have been computed f o r  a l l  the impurit ies i n  Table 1; 
'e should 

be a constant .  I t  can be seen t h a t  fo r  the low vapor pressure i m -  

p u r i t i e s ,  te i s  almost constant .  Again, the te for Cu is one 

order of magnitude l e s s  than o thers  in che low vapor pressure i m -  

pu r i t y  group. Among the high vapor pressure impuri t ies ,  the te 

is almost constant .  I t  can be seen tha t  t, fo r  the high vapor 

pressure impuri t ies  is one order of magnitude l a rge r  than t h a t  of 

low vapor pressure irnpurit i e s  . 



NONIDEAL SOLUTIONS 

The norma 1 evaporation equations can be fur  t k ,  2r modified by 

introdllcing the concept of solvent -solute in te rac t  ions. If one 

considers deviation from t5c Xiiod t s law, i t  can bc shown that  the 

evaporat im ra tes  of solvent and solute  w ,ll be changed by a new 

fac to r ,  the a c t i v i t y  socf f ic ient .  For very d i l u t e  solut ions,  

which we a re  considering, evaporation ra t e s  for  so!ute and solvent 

can be given by u '=  yuUe and V' = Ve, respectively,  where { u 

is the a c t i v i t y  coefcicient  of the solute (Henry constant, in  t h i s  

case) .  

In general, siich consideration should not a f f e c t  the estimated 

time, te'  for  tht* type I impurities (Fe, N i ,  Cr, T i ,  e t c . ) ,  ex- 

cept in  the case of copper. From the available phase diagram, i t  

is evident that  Be and Cu atoms have :;i.gnif icant interact ions 

with each other and form many compounds (Refs. 7,8) . Thus the 

excess f ree  energy for  the system should be negative, resu l t ing  i n  

a lower value of 
iCu 

compared to  the ideal solut ion case 

( = 1 . 0 )  In such a s i tua t ion ,  vie i s  not very much higher 

tha? uku, and t h i s  leads to  o greater  e f fec t ive  time, 5. cu 
to reach the f i n a l  concentrat ion. '.%c exact value of , v  i s  

Cu 
d i f f i c u l t  to  evaluate because oL the Lack of data i n  t h i s  composi- 

t ion range. 

In the cases of Zn and Mg, the so lub i l i ty  in  beryllium i s  

negl igible  (Ref. 8) and so and v should be gre&ter  than 
@ 

one. This would lower the e s t i m t e d  t i m e ,  te. meaning a be t t e r  

agreement with the other elements. 

I t  i s  important to  note that  exact calculation fo r  the devia- 

t ion  from the ideal solution case is d i f f i c u l t  because of the lack 

of data,  ~ n d  such estimations are  purely qua l i t a t ive .  



1. Norrml evaporation Eqs.  (1) and (2)  a r e  general ly  va l id  

and useful  fo r  the study of beryllium pur i f i ca t ion .  lhis agrees 

wi th  a previous study on the r e s u l t s  of Ni-Fe and N i - C r  sys-  

tems (Ref. 4 )  . 
2 .  The compiltnd values of P - t i U i  o r  t i V i  a r e  essen- 

t i a l l y  constant  fo r  the same type of so lu te  elements. although d i f  - 
f e r ing  by one order of magnitude between d i f f e r e n t  types of e l e -  

ments, 

3. The normal evaporation ana lys t s  has been extended to  cover 

cases  of l imi ted l i qu id  d i f fus ion .  I t  i s  shown t h a t  under steady- 

s t a t e  condit ions,  the so lu te  concentrat ion near the sur face ,  i .e . , 
ms ' may be up t o  f ive  orders  of magnitude d i f f e r e n t  from the bulk 

concentrat ion,  m . 
0 

4 .  Corrections f o r  l imi ted l i qu id  d i f fus ion  a r e  d e f i n i t e l y  

needed f o r  the highly evaporative so lu te  elements Mg, Zn, and 

Na, fo r  which the computed evaporation times, r e ,  a r e  improved 

by three  o r  four orders  of magnitude. 

5 .  After  these cor rec t ions ,  the compu ~ e d  t irnes a r e  comparable, 

even between d i f f e r e n t  types of so lu te  elements. 

6 .  The agreement among the computed times can be fu r  cher i m -  

proved by considering the deviat ion from the ideal  so lu t ion  condi- 

t i on .  Because of lack of data ,  i t  i s  d i f fLcul t  t o  give any cauantiW 

t a t i v e  ca lcu la t ion .  

7 .  Estimations of so lu t e  evaporation behavior a r e  now well  

wi thin  one order of magnitude. 



8 .  The commonly observed logarithmic relat ion between evapo- 

ration time t a ~ ~ d  f inal  concentration m further supports the 

va l id i ty  of our normal evaporation equations. Such relations are, 

however, true only for widely different solute and solvent evapo- 

rating rates and for dilute  solut ions,  as can hc seen from Eqs. ( 1 )  

ai9d (2)  . 
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In this appendix, we evaluate the rate of momentum acquired by a liquid surface 

when its molecules a r e  evaporating into a vacuum. 

First ,  let us  evaluate the evaporating rate and evaporating presaure by considering 

the equilibrium case. When tii? surfaze is  a t  equilibrium with its surroundings, the rate 

of molecules leaving the surface by evaporation will equilibrate the rate of condensat:on, 

resulting in zero gain o- less  by the surface, These rates  will be called the equilibrium 

rates  of evaporation and condensation, and an evaluation of one will yield the value for 

the other. The condensing rate  is  readily given by 

t - -P t r v = P ( F )  - 
(2n RT) 4 

At equilibrium, the rate of molecules impinging on a unit surface a rea  is nT. 

Here, n i s  the number densily, o the mass density, T the absolute temperature, and R 

the gas constant of tht molecules in equilibr ium with the liquid. The equilibrium 

evaporating ra te  in also given by Eq (1); this i s  the maximum rate at which molecules 

can elrc8jje from a liquid s u r f ~ c e  wl::cn is kept at a temperliture T. Thus, the evapor- 

ating ra te  intr! a vacuurrl fins t h i ~  1iqt::d surface is also givt!n by Eq (1'. 

The preseure p in Eq (1) i s  the vlrpor pressure at  saturation. Si~c i :  prerettre is  

a sca la r  quantity, it represect8 the srm ::!* ihe pressures acting c.n the surface by the 

evaporating and the condeneing rno1ec;llea. At oquilibrium, thebe two contributions 

equilibrate with each ol?sr. Hence, the ec;uilibrium evaporating pressure is equal to 



half of the saturation vapor pressure. When the surface i s  surrounded by a perfect 

vacuum, the condensing pressure vanishes and the pressure due to  the evaporating 

molecules i s  just given by the equilibrlurn evaporating pressure, o r  half of the 

saturatior. vapor pressure. Consequently, we can expecl that the rate  of momentum 

acquired by a liquid surface when its molecules are evaporating into a vacuum is  

equal to half of the saturation vapor pressure. This i s  verified analytically below. 

The molecules evaporating from a liquid surface kept a t  temperature T have a 

a -- 2 
Maxwellian distribution function n(2nRT) e /2RT. Each beam of molecules 

emanating with a velocity v from a unit surface area and at an angle 9 inclined from 

the normal to the area car r ies  a flux ra te  of nvcose and a momentum rate  of 
2 2 2 

mnv cose = IY v cos 0. Hence the total momentum ra te  in question is given by 

- -- -- 
o(ZnRT) 2///v2cos2e e 2RT V2sin@dvd9. Integrating v from 0 to a , 0 from 0 a 
?? - 
2 , and w frcm 0 to 2n readily yields 3 oRT = i p  and completes the verification. If 

the surrounding vacuum is imperfect, then the ra te  is given by 

CY can be determined either from the given degree of imperfection o r  experimentally. 
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Perfec t  l i qu id  mixing but  no s o l i d  d i f f u s i o n  i s  assumed i n  

normal f reezing.  I n  addi t ion ,  the  molar compositions of t h e  f reez-  

i ng  s o l i d  and remaining l i qu id ,  respec t ive ly ,  fol low the  so l idus  

and l iqu idus  curves of the  c o n s t i t u t i o n a l  diagram. For the  l i n e a r  

ca se ,  i n  which both the  l iqu idus  and so l idus  a r e  p e r f e c t l y  s t r a i g h t  

l i n e s ,  t h e  normal f reez ing  equation giving t h e  f r a c t i o n  s o l i d i f i e d  

a t  each m e l t  temperature and the  s o l u t e  concentra t ion p r o f i l e  i n  

the  f rozen s o l i d  was determined a s  e a r l y  as 1902, and has s ince  

been repeatedly  published. Corresponding equations f o r  quadrat ic ,  

cubic,  o r  higher-degree l iqu idus  and so l idus  l i n e s  have a l s o  been 

obtained.  This paper gives  the  equation of normal f reez ing  f o r  

i d e a l  t e rnary  l i q u i d  so lu t ions  s o l i d i f i e d  i n t o  i d e a l  s o l i d  solu-  

t i ons  of the  pseudobinary type.  Sample computations w i t h  the  u se  

of t h i s  new equation were made and a r e  given for t h e  G a - A l - A s  

sys tern. 
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Perfect  l i qu id  mixing but  no s o l i d  d i f f u s i o n  i s  assumed i n  

normal f reez ing ,  1 x 1  addi t ion ,  the  molar compositions of t h e  

f reez ing  s o l i d  and remaining l i q u i d ,  r e spec t ive ly ,  follow the  

so l idus  and l iquidus  curves of the  c o n s t i t u t i o n a l  diagram. 

For the  l i n e a r  case ,  i n  which both the  l iqu idus  and so l idus  

a r e  pe r f ec t ly  s t r a i g h t  l i n e s ,  the  normal f reez ing  equation giving 

the f r ac t ion  s o l i d i f i e d  a t  each melt temperature and the  s o l u t e  

concentrat ion p r o f i l e  i n  t h e  frozen s o l i d  was determined a s  e a r l y  

a s  1902 (Ref. l ) ,  and has s ince  been repeatedly  published (Refs. 2-9). 

Corresponding equations f o r  quadra t ic ,  cubic,  o r  higher-degree 

l iquidus  and so l idus  l i n e s  have a l s o  been obtained (Refs. 10-12). 

A recent  publ icat ion presents  the  normal f reez ing  equation f o r  

i d e a l  d i l u t e  so lu t ions  o r  a l l o y s  i n  which the  l iqu idus  and so l idus  

a r e  exponential  funct ions  of the  r ec ip roca l  absolute  me1 t tempera- 

t u r e  (Ref. 13). The logarithm of the  mole f r a c t i o n  segregat ion 

c o e f f i c i e n t  km f o r  the  d i l u t e  component i s ,  there fore ,  a l s o  a 

l i n e a r  function of the r ec ip roca l  of the  abso lu te  temperature. 

Fur ther ,  i n  such i d e a l  so lu t ions ,  the  r a t i o  of p a r t i a l  pressure  

0 of each component, pA, t o  t h a t  of t h e  pure component, pA, 

equals  the  atomic f r a c t i o n  x 
A' i . e . ,  xA I pA/pie   his last  

equation permits the computation of the  s o l i d i f i c a t i o n  behavior 



of such solutions or al loys and the resultant sol id concentration 

profiles from basic thermodynamic quantities without the use of 

phase diagrams. 



THE PSEUDOBINARY SYSTEM 

This memorandum gives  the  equation of normal f reez ing  fo r  

i d e a l  t e rnary  l i q u i d  so lu t ions  of A, B, and C atoms (Fig. 1)  

s o l i d i f i e d  i n t o  i d e a l  s o l i d  so lu t ions  of AB-AC compounds w i t h  

A atoms on one s u b l a t t i c e  and B o r  C atoms on the  o ther .  

Such systems can be t r ea t ed  a s  pseudobinary systems. Account is  

taken of the  entropy of mixing of the  th ree  atomic spec ies  t o  

form the  i d e a l  l i qu id  so lu t ions  along the  pseudobinary. 

Fig .  1 Cons t i t u t i ona l  Diagram f o r  a Ternary 
System of t h e  Paeudobinary Type 



For t h e  compound AB, we have 
1 

The equilibrium constant for  the react ion i s  

and the standard f ree  energy A F ~ ~  and the f r ee  energy of forma- 

t ion a F i B  a re  re la ted  to  K a t  temperature T by 

f  
For the compound AB, the f r ee  energy of formation, 4FAB, 

is  re la ted  t o  the f r ee  energy of melting, AF;~. and the heat of 

melting, AH:*, a t  the melting point T:~ by 

It has been assumed tha t  the difference in  heat capacity be- 

tween the l iquid and so l id  i s  negl ig ib le .  The -RT * In 4 term 

i s  the idea l  entropy of mixing t o  form the stoichiometric l iquid 

phase. Hence, 

Similarly,  for  the compound AC, we have 



Hence, 

where A < ~  i s  the heat of formation of the compound AC, assumed 

m constant; and TAC i s  the melting point of AC. 

For the ternPLy liquid phase of the pseudobinary, 

1 s 
-RT in  4 f xB/xAB =  AH:^ (1 - T / T ~ ~ )  , (8) 

and 

Equations (8) and (9) are essent ia l ly  the same as those previously 

given (Refs. 14 , lS) .  From these equations, 

where 



b - -Anm 
rn 

AB /R a -  'b/TAB s gm - A H ~ ~ / R  , and f = a g / ~ A c  (12) 

a r e  constants f o r  a given ternary system of the type shown i n  

Fig.  1, while t h e  temperature-dependent var iables  

U - exp(a + b / ~ )  and V = exp(f + g/T) . 
s 7;  

(13 

" f s l . ;  a '. + Equations (10) and (11) yield the sol idus equation f o r  the 

compound AB 

S s 1 - x  AB 
v = (1  - xAB) V 

i r Hence. 

s The value of xAB 
can be a s  small a s  zero when, according t o  

Eqs. (15) and (13), V = 1 = exp(f + g / T ) ,  i , e . ,  when T = -g/f = 

1 = x / 2  = 0 [ E q .  (11) 1, as  expected, The value of 
and xg b 

xs can a l s o  be a s  large as  1 when U * 1 - exp(a + b / ~ )  i n  
AB 

m 
accordance w i t h  Eqs. (15) and (13), i . e . ,  when T = -b/a = TAB 

1 and xB = xiB/2 = [Eq. (10) 1, a l s o  a s  expected. 

Notice tha t  there  a r c  no AB o r  AC canpounds i n  the melt, 

while i;n the s o l i d  there a r t  only compounds AB and/or AC, but 

no individual elements A ,  B, and C .  Hence, the thermodynamic 

8 s 
molar concentrations xAB, x 1 1 1  

AC' 'A' 5' k* 
Considering the ternary l iquid or so l id  solut ions a s  a whole, 

and, without regard t o  cry8 ta l logr  aphic l a t t i c e  arrangements, we 



can define the chemical molar concentrations mA, mg, and m 
C *  

Evidently, 

1 1 
m B + m C - < + $ = f  ¶ 

1 1 
m - x , and B B I 



THE NORMAL FREEZING EQUATION 

We can now b a l a ~ c e  the  amount of canponent B i n  the  remain- 

1 ing  l i qu id  by i t s  chemical molar concentra t ions  5 and ms B, and 

then obtain  the  usual  d i f f e r e n t i a l  equation f o r  normal f reez ing  

(Refs. 9 ,  11-13) a s  follows 

where p is  the  f r a c t i o n  s o l i d i f i e d .  

Subs t i tu t ing  in  t o  the  normal f reez ing  d i f f e r e n t i a l  equation 

r e s u l t s  i n  

where 

and 



q = exp(f - ga/b) ' 
an - bf 

I e x p  g - b  

bf - ag s - exp 
g 

9 

Uo = exp(f + g/To) 

V exp(a + b/To) 
0 

.4 

and 

where To is the initial freezing temperature and can be deter- 

' the mined from the pseudoliquidus line on substituting f o r  xAB 
1 initial melt canposition, xAB,o 1 2 . x  1 B,o' 



This ternary system can be considered a s  a GaAs-A1As pseudo- 

binary. I n  the l iquid melt, we have 

In the GaAs-A1As mixed c r y s t a l ,  w have 

S 
X GaAs = 2m:a 

S S 
X A l A s  = 2m A 1  

S S s S 
X GaAs + XAIAs I 2(mGa + mAl) ' 1.0 . 

To determine the phase diagram [ i . e . ,  l iquidus and sol idus,  

Eqs. (8)-(15)] and, i n  addi t ion,  to  compute the nortnal freezing 

behavior according t o  Eqs. (18)-(20), the following four thermo- 

dynamic constants are required (Ref. 14 gives the values of these 

cons tan ts) : 

Melting point of GaAs 1511 K 

Melting point of AlAs 2013 K 

Heat of formation of GaAs 16.64 Ikal/mol 

Heat of formation of A l A s  22.8 Kcal/mol . 



Hence, a = 5.700, b = -11,470, f - 5.542, g = -8,374, q = 3.983, 

r = 0.1505, s = 166.5, a - -1.335, B = 0.1772, and y = 1.006. 

Table 1 suamarizes the  s o l i d i f i c a t i o n  behavior of the  Ga-A1-As 

system, t r ea t ed  as a pseudobinary. The f i r s t  th ree  columns descr ibe  

the  phase diagram, i . e . ,  the concentrat ion of aluminum i n  the  l i qu id  

1 S 
m e l t  xAl and t h a t  of A l A s  i n  the  s o l i d  c r y s t a l  x A l A s  

a t  t e m -  

peratures  f r m  1720°C down t o  1238°C a t  20°C i n t e r v a l s .  The 

next two columns, obtained from the  f i r s t  three ,  show t h a t  the  

- S segregation c o e f f i c i e n t  k f o r  A l ,  i . e . ,  
1 

k ~ l  - X ~ 1 ~ s 1 2 X ~ 1 *  

always exceeds un i ty  w h i l e  t h a t  of Ga, i - e . ,  kca = - xi1AS)/ 

1 
( 1  - 2xA1), never does s o  except a t  1238°C. Both of these  segre- 

ga t ion  c o e f f i c i e n t s ,  howzver, a r e  widely va r i ab l e ,  increas ing  w i t h  

decreasing m e l t  temperature, by f a c t o r s  of over 6.3 i n  the  case  

of kAl and of over 3.7 i n  the  case  of kGa. Thus, f o r  t h i s  

system, a s  wel l  a s  f o r  many o t h e r 5  the  l i n e a r  normal f reez ing  equa- 

t i ons  (Refs. 1-9) involving constant  segregation cae f f i c i e n t s  a r e  

genera l ly  not appl icable .  

These phase diagram da ta  can, of course,  be obtained a l s o  by 

means of the  equations of Ilegems and Pearson (Ref. 14) ,  o r  those 

of Ste ininger  (Ref. 15). The d i r e c t  computation of the  norrml 

f reezing da t a  from bas ic  thermodynamic cons tan ts ,  however, appears 

t o  have never been attempted o r  published. By means of  Eqs. (18) 

and (19) of t h i s  memorandum, these normal f reez ing  da ta  a r e  c a l -  

cu la ted  and given a s  the l a s t  n ine  coluums. Here, the  f r a c t i o n  
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* 
so l id i f i ed ,  p, is given as a function of both t h e  m e l t  tempera- 

ture ,  T,  and the A 1  concentration i n  the o r ig ina l  l iquid  melt, 

. , X 
1 
Al,oO The concentration p ro f i l e  can be obtained by p lo t t ing  the 

-1 
s concentration of A l A s  i n  the so l id  c r y s t a l ,  xAUs, against  t h e  

i 
4 f rac t ion  so l id i f i ed ,  p, f o r  the appropriate i n i t i a l  A 1  concen- 

t 
I t r a t i o n  i n  the melt, x 

1 
Al,o9 

i 
.! 



OTHER SYSTEMS 

Many o t h e r  t e r n a r y  systems can  a l s o  be t r e a t e d  a s  pseudo- 

b i n a r i e s .  The n e c e s s a r y  thermodynamic c o n s t a n t s  a r e  u s u a l l y  

a v a i l a b l e  i n  t h e  l i t e r a t u r e  . S t e i c i n g e r  (Ref. 15) , for c x a m p l ~  , 

has  examined a number of impor t an t  systems and given t h e  ncces- . 

s a r y  thermodynamic cons  t a n  ts r e q u i r e d  t o  compu tc t h c  s o l i d i f i c i t -  

t i o n  b e h a v i o r s  and t h e  phase d iagrams.  These systems i n c l u d e :  

InAs-GaAs, InSb-InAs, InSb-GaSb, GaSb-AlSb, InSb-AlSb, CdTe-ZnTe, 

CdTe-CdSe, HgTe-CdTe, GeTe-MnTe, PbBr2-PbC12, InAs-InP, SnTe-PbTe, 

PbTe-PbSe, HgTe-HgSe, ZnTe-ZnSe, and HgTe-ZnTe. For  t h e  f i r s t  

1 3  sys tems ,  h i s  c a l c u l a t e d  s o l i d u s  c u r v e s  a r e  i n  good t o  excellent: 

agreement w i t h  t h e  pub l i shed  expe r imen ta l  v a l u e s .  These systems 

can ,  t h e r e f o r e ,  be  c o n s i d e r e d  i d e a l .  One can  t h u s  compute w i t h  

some conf idence  t h e i r  normal f r e e z i n g  behav io r s  a c c o r d i n g  t o  

Eqs . (18) -(20) of t h i s  memorandum. 
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In the study of normal evaporation, i t  i s  assumed tha t  the 

evaporating a l l o y  is homogeneous, t h a t  the vapor i s  ins t an t ly  

removed, and tha t  the a l loy  follows Raoultls  law. The d i f feren-  

t i a l  equation of normal evaporation r e l a t i n g  the evaporating time 

t o  the f i n a l  so lu te  concentration i s  given and solved f o r  several  

important special  cases. Uses of the derived equations are  ex-  

emplified with a N i - A 1  a l l o y  and some binary iron a l loys .  The 

accuracy of the predicted r e s u l t s  a re  checked by analyses of 

actual  experimental data  on Fe-Ni and N i - C r  a l loys  evaporated 

a t  1600°C, and a l s o  on the vacuum pur i f ica t ion  of beryllium. 

These analyses suggest t h a t  the normal evaporation equations pre- 

sented here give sa t i s fac to ry  r e s u l t s  t h a t  a re  accurate t o  within 

an order of magnitude of the correc t  values, even fo r  some highly 

concentrated solut ions.  Limited diffusion and the r e su l t an t  sur- 

face so lu te  depletion o r  enrichment appear important i n  the ex- 

tension of t h i s  normal evaporation approach. 
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INTRODUCTION 

In normal evaporation, we assume that the evaporating alloy 

is always homogeneous in composition, that the vapor is instantly 

removed, and that the alloy follows the Raoult's law (Ref. 1). 

Such conditions exist or are approached in an induction-stirred, 

melt-in-vacuum or liquid drop-in-space. 

This memorandum deals with the normal evaporation of binary 

alloys. In pc?rt:.cular, we study the evaporative segregation pa t- 

terns, i.e., t h -  :ype and degree of enrichment or depletion of 

solute in the evaporating source, at different evaporation tempera- 

tures and times. 



DIFFERENTIAL EQUATION OF NORMAL EVAPORATION 

The appendix of Ref. 2 gives the exact solut ion f o r  the normal 

evaporation of binary a l loys .  This equation r e l a t e s  the concentra- 

t ion of the solute ,  m,  a t  a time, t ,  when the mole f rac t ion  of 

the a l l o y  remaining is F, a s  follows: 

& 
U-V 1 - m !J -v 

= j (+> F = ~  
0 0 

where N and No a re ,  respect ively,  L'- .:umber of moles of both 

solvent and solute  a t  evaporating times t = t and t = 0; m is 
0 

the i n i t i a l  molar concentration of the a l loy;  and U and V a re ,  

respectively,  the evaporation r a t e s  of pure so lu te  and solvent.  

For pure solute  and solvent,  respectively,  these evaporation 
2 r a t e s  in  mol/cm /sec a re  

and 

where K - 5.833 x loo5 a ,  u - 1 f o r  most metals (Ref. 1) ; Mu 

and M a re ,  respectively,  the molecular weights of the solute  

and solvent atoms; T is the evapor&ting temperature i n  degrees 

Kelvin; and and Bu o r  % and BV a r e  evaporating con- 

s t a n t s  f o r  the so lu te  o r  solvent given, fo r  example, by Ref. 1. 



Differentiating Eq. (1) yields 

but 

where A is the evaporating area of the alloy, assumed tor-stant 

here. 

Substituting Eq. (5) into Eq. (4) results in 

where 



SPECIAL CASE SOLUTIONS OF THE 
1 

NORMAL EVAPORATION EQUATION f 

1 
Equations (6) - (9) allow us to determine the evaporating time, 1 

t, for an alloy to reach a specific solute concentration, m. Un- I 
fortunately, these equations are not exactly solvable in the gen- i 

era1 case. All of the following special and important cases, (ex- I i 
cept Case V) , however, are solvable in closed forms. t 

Case I: The solute is lntch more evaporative than the solvent, . i 
Lee., U > > V ;  or a = -1 and 8 - -2. In this case I 

where 

and 

When m 2 m the second term in the bracket is nearly 0. 
0' 

The evaporation time for this first case, t is then a logarith- 

mic function of m, as has been experimentally observed (see e.g., 

Ref. 3). 

Also, when m x  mo 2 0 ,  



Case XI: The solvent i s  nuch more evaporative than the 

solute, i . e . ,  V >> U; or a - -2 and p = -1. In this  case 

where 

and 

For dilute solutions ( i . e . ,  m 2 m 4 O),  t2 also  becomes a 
0 - 

logarithmic function of m, as  has been observed. 

where 

Case 111: a = (2V - u)/(u - V) = 0, i . e . ,  U = 2V and 13 = -3  

case IV: p = (V - 2U)/(U - V) = 0, - *  V = 2U and a = -3. 

In this  case 



where 

i 
0 
d Equations (15) and (16) show t h a t  under some conditions, the 
t . . I 
t 
5 evaporating time, t ,  is  more adequately represented by l inea r  

-2 -2 - Z 
t functions of (1 - m) o r  m , r a the r  than by logarithmic func- f 

! 
t ions of m. - = 

Case V: For r e l a t i v e l y  d i l u t e  a l loys ,  i.e., m and Bm </ 1, - 1 
the following solut ion by s e r i e s  expansion can be obtained from 

Eq. (6): ' I  - a  

(em) i ( B d i  1 
1 - pm + + * * *  + (-1) i(+ "' (17)  

1 
1 I I  

and 

:I 

For computer calculat ions,  i t  i s  desirable  t o  know the r a t i o  

of the ith term t o  the ( i  - 1) th term, thus - :1 

which is  general ly  l e s s  than pm/i o r  f3mo/i .  



Because Bm << 1 and i constant ly  increases with each addi- 

t ional  term, t h i s  s e r i e s  converges rapid ly  unless B ij very large,  

i.e., unless U = V, which leads to the following in te res t ing  case: 

Case V I ;  The so lu te  and solvent a r e  evaporating a t  equal r a t e s ,  

e .  U - V. In  t h i s  case, we would expect 

m = m  
0 

f o r  a l l  c . 
There is, then, no evaporative segregation, tha t  is ,  there i s  

ne i ther  so lu te  enrichment nor depletion i n  the evaporating source. 

For any p a i r  of solvent and so lu te ,  there is  a unique tempera- 

ture,  Ts, a t  which U = V and, hence, the a l l o y  concentration 

remains s t ab le  o r  constant. Equations (2)  and (3) give: 

Case VII: With extremely d i l u t e  a l loys ,  i . e . ,  m .\- m 2. 0, 
0 - 

we have (Ref. 2) 

Hence, 



EXAMPLES OF COMPUTATION 

The N i - A 1  System: 

As an example of the use of the various derived equations, 

the evaporation behavior of an a l l o y  containing 8 percent by weight 

of A 1  i n  N i  a t  the melting point of pure N i  (i.., 1453'C) 

is computed. Here, the so lu te  element (Al) i s  compar, clvely 

highly evaporative r e l a t i v e  t o  the solvent (Ni) . Equation (11) , 
therefore,  appl ies ,  and the t i m e ,  t l ,  t o  reach a f i n a l  so lu te  

concentration m from a specif ied i n i t i a l  coF-pntration, m . i s  
0 

d i r e c t l y  proportional to  NoA/U ( in  the G1 constant) .  Tab1.c 1 

gives the times t o  reach various f i n a l  A 1  concentrations for  one 

mole (53.66g) of the 8 percent A 1  in  N i  a l l o y  (mo = 0.159) 

evaporating a t  1453°C from i t s  (supposedly constant) 10 cm 2 

surface.  

Table 1 

NORMAL EVAPORATION OF 8% BY WEIGHT ALUMIWM I N  NICKEL AT 1 4 5 3 " ~  

Final  Solute - Alloy Remaining 

Weight 
Fraction 

Mole 
Fraction 
0.1590 
0.1573 
0.1555 
0.1536 
0.1518 
0.1500 
0.1481 
0.1463 
0.1444 
0.1426 
0.1407 

Mole - 
1.0000 
0.9977 
0.9955 
0.9932 
0.9910 
0.9887 
0.9865 
0.9842 
0.9820 
0.9798 
0.9775 

Evaporation 
Time (sec) 



Iron Alloys: 

The evaporation behavior of binary i ron al'loys containing 20 

d i f fe ren t  so lu te  elements has a l so  been studied. Table 2, l i s t i n g  

Table 2 

EQUI-EVAPORATIVE TEMPERATURES FOR 

TWENTY BINARY IRON ALLOYS 

U/V a t  " C U/V a t  
Solute 1600 " C T~ , Solute 16OOcC TS.  . 'C 

the equi-evaporative temperatures f o r  these 20 d i f fe ren t  a l l o y  sys -  

tems, a l so  gives the r a t i o s  of the so lu te  evaporating r a t e ,  U, a t  

1 6 0 0 ° ~ ,  t o  t h a t  of the solvent i ron,  V. A t  1 6 0 0 ° ~ ,  10 of these 

so lu te  elements evaporate f a s t e r  than the solvent ( the three l e f t  

columns) and 10 slower (the three r i g h t  columns). Moreover, these 

r a t i o s  vary widely over 18 decades, from 4.41 x 10 -I2 f o r  the 
6 

slowest evaporating, W, t o  3.76 x 10 f o r  the f a s t e s t  evap- 

orat ing,  Cd. Because of t h i s  wide var ia t ion  i n  evaporating r a t e s ,  



... 

i 

! 

f and because of the extreme s e n s i t i v i t i e s  of the evaporating surface 
: t o  unsuspected contaminants, predicted o r  experimental evaporating 

r e s u l t s  cannot general ly  be very accurate.  
. . 

The equi-evaporative temperatures i n  i ron a l loys  a l s o  vary 

widely. Binary i ron  a l loys  containing C r ,  Z r ,  Mo, and W have 

f no p rac t i ca l  equi-evaporative temperatures. One can, therefore,  

i i always expect these a l loys  t o  change compositions continuously 
4 

$ ;: with the evaporating time. 

2: 
. i  d 

Table 3 shows the e f f e c t  of evaporating tempera t c re  on the 
4 4 i U/V r a t i o s  f o r  four d i f f e ren t  so lu te  elements Mg, Ca, Mn, and 

. -, 3 A l .  In the range of 1500°C to  1 9 0 0 " ~  and beyond, increasing 
- f 2 

1 
i 
d Table 3 

.L 

i , EFFECT OF SOLUTE ELEMENTS AND EVAPORATING TEMPERATURES 
i 
1 
$ 

ON THE VALUES OF U/V (x 1000) I N  IRON ALLOYS 

Solutes 

the evaporating temperatures always decreases the U/V r a t i o s  . 
% I .. ,. This can a l s o  be seen from Table 2, as  the equi-evaporative temper- 

a tures  shown f o r  these four binary i ron a l loys  a r e  higher than 

1600 "C, a t  which temperature the four so lu te  elements evaporate 



much f a s t e r  than the solvent iron. Table 3 a l s o  sham t h a t  f o r  the 

same temperature var ia t ion ,  the more evaporative the so lu te  element , 
the more percentage var ia t ion  the U/V r a t i o .  In the case of Mg, 

e.g., the U/V r a t i o  decreases by about 20 times from 1 5 0 0 " ~  t c  

1900°C, whereas f o r  A l y  the same r a t i o  decreases only by l e s s  

than three times over the same temperatwe in te rva l .  

Figure 1 s h w s  the e f f e c t  of so lu te  elements and evaporating 

temperature, T y  on the evaporating time t ,  f o r  a given s e t  of 

i n i t i a l  and f i n a l  so lu te  concentrations ( i . e . ,  m = 0.01 and 
0 

m - 1 ppm) . For given mo and m y  the log t versus 1 / ~  curves 

f o r  these highly evaporative so lu te  elements a r e  approximately l i n -  

e a r  and have posi t ive slopes. This can be expected from Eq. (11) 

since,  f o r  given mo and m, log t is l i n e a r l y  r e l a t ed  to  

BIT - 0.5 log T y  and since 0.5 log T i s  small r e l a t i v e  t o  BIT 

within the evaporating temperature range studied. Thus, one can 

determine, from Fig. 1, the value of the elemental evaporating con- 

s t an t  B, or heat of evaporstion AH = 4 . 5 7 4  B (Ref. I ) ,  f o r  the 

so lu te  elements by p lo t t ing  log t versus 1 / ~  and measuring the 

slope of the r e su l t an t ,  near ly  s t r a i g h t  l ines .  

In  Fig. 2, the log t versus 1 / ~  re la t ionships  a l so  appear 

nearly l inea r  f o r  a l l  the four d i f f e ren t  i n i t i a l  concentrations 

(i.e., m = 1 0 ,  1 0 *  l o ,  and loo4) of A 1  i n  Fe. This 
0 

can a l s o  be seen from Eqs. (11) and (12). A 1 1  these nearly s t r a i g h t  

l i n e s  have iden t i ca l  slopes, from which the hea t  of evaporation of 

pure A 1  can be evaluated. 

Figures 3 and 4 display the e f f e c t  on the evaporating time, 

t, of f i n a l  so lu te  concentration, my and e i t h e r  i n i t i a l  concen- 

t r a t i o n  mo ( i n  Fig. 3) o r  so lu te  elements ( i n  Fig. 4 ) .  

Figure 5 indicates  t h a t  Mg, Ca, and i n  Fe a l loys  a re  

so evaporative a t  1600°C t h a t  p r a c t i c a l l y  a l l  3f these elements 
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0 
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Fig. 1 Evaporating Times f o r  Different  Dilute Iron Alloys 
t o  Change Concentration from m, = 0.01 t o  m = 1 ppm 
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Fig. 2 Evaporating Times  for Dilute Iron Alloys Containing 
A1 and Starting a t  Four Different In i t ia l  
Concentrations, to Reach a Final Concentration of 
m = 1 ppm 
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CONCENTRATI ONS 

FINAL CONC, m 

Fig. 3 Effect of In i t ia l  and Final Solute Concentrations on 
the Evaporating Times in Dilute Iron Alloys Containing 
A1 a t  l60O0C 
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0 
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1 Fig. 5 Evaporation Loss of Dilute Iron Alloys at 1600 "C i 
i As a Function of Solute Elements and Final Solute 
% Concentrations 



a re  removed by evaporation, without mch evaporative loss  of the 

solvent Fe atoms. On the other  hand, A 1  i s  comparatively l e s s  

evaporative so tha t  much of the solvent Fe atoms a re  evaporated 

off  together with A l .  To achieve a pur i f ica t ion  fac to r  of 10 7 
- 

-9 ( i . ,  t o  m = 10 ) from mo = C.01, f o r  example, the i n i t i a l  

evaporating a l loy  must lose over 30 percent of i ts  m t e r i a l .  



ACCURACY OF PREDICTED RESULTS 

To check the v a l i d i t y  of our derived equations f o r  normal 

evaporation of binary al loys,  the current l i t e r a t u r e  has been 

searched, Several s e t s  of a l loy  evaporation data have been found 

tha t  a re  amenable t o  ncrmal evaporation analysis .  These s e t s  in- 

clude the following: 

The Fe-Ni and N i - C r  Systems: 

An analysis has been made of the data by Obradovj- e t  a l .  

(Ref. 4) fo r  Fe-Ni and N i - C r  a l loys  evaporated a t  1600'C 

for  d i f ferent  times under various ambient pressures. In the 

80% Ni-20% C r  case, evaporation s t a r t e d  with No = 0.7582 moles 
2 of the a l loy  having an evaporating area A = 10.0 cm . The so lu te  

and solvent evaporating r a t e s  a re ,  respectively,  U ~ r  = 3.479 
2 

and VNi = 6.386 x mol/cm /sec.  This i s  a case where the 

solute ,  C r ,  i s  comparatively highly evaporative r e l a t i v e  to  the 

solvent, N i  . Hence, the evaporating time tl given in  Eq . (11) 

applies,  i . e . ,  

where G1 = -No (1 - rno)/~u, and m aad m a re  the i n i t i a l  and 
0 

f i n a l  molar solute  concentrations in  the al loy.  

Least square. f i t s  0.f the Obradovic data - give nearly constant 

values of observed G1: -1.785, -5.064, and -5.064 (x lo4 s i c )  - 

for ambienc pressures of 1, 100, and 500 (x t o r r ) .  The cal -  

culated values of G1, t h o ~ g h  a l s o  nearly constant, a re ,  hwever ,  

one order of magnitude smaller, indicating surface so lu te  depletion. 

Similar analysis f o r  the 60% Fe-40% N i  a l l o y  evaporated with 



2 
No - 0.7478 moles and A = 10.0 cm gives UNi = 6.386 x 

2 and Vpe = 1.081 x log5 mol/cm /sec. Here, the solvent Fe is 

much more evaporative than the so lu te  N i ,  and Eq. (14) ap: l i e s .  

The values of observed evaporating coeff ic ients  G2 = m 0 N o / ~ v  a r e  
1. 

2.469, 1.369, and 8.386 (x 10' see),  f o r  ambient pressures of 

1, 100, and 500 (x t o r r ) ,  respectively.  The calculated 

G Z 1 s  a r e  again nearly constant but a l s o  an order of magnitude 

smaller than the observed G 2 ' s ,  again indicating solvent deple- 

t ion (or so lu te  enrichment) a t  the surface.  Details  of these 

analyses a re  given in  Ref. 5. 

Beryllium Purif icat ion 

The k ine t ics  of normal evaporation f o r  beryllium have bee11 

quant i ta t ive ly  checked with actual  r e s u l t s  of beryllium purif ica- 

t ion during vacuum induction melting. Detai ls  a re  given i n  Ref. 6 .  

In these tests, beryllium was crucible-free,  induction-me1 ted under 

an ambient pressure of t o r r .  The actual  temperature of rhe 

melt was not known, and the exact evaporating r a t e s  f o r  the beryl- 

lium solvent and various so lu te  elements cannot be computed. How- 

ever, because a l l  so lu te  elements ( i . e . ,  Fe, C r ,  Mn, N i ,  S i .  A l ,  

Mg, Cu, Zn, and Na) and the solvent,  Be, were evaporating 

from the same o r  conmon liquid-gas in ter face  of a f ixed area fo r  

the same length of time, we can compute the values of P, defined 

as  the product of the evaporating time, t ,  and solvent evap- 

orat ing r a t e ,  V ( fo r  V >> U) , o r  so lu te  evaporating r a t e ,  U 

(for - U >> V) ; thus: - P = t r 7  c~ t-U. -Table lc. gi-.res tke - i n i t i a l .  - 

conceq t r a t  ions and f i n a l  concentrations (<n ppm) of the various 

solutes ,  together with the value of P, actual  surface concentra- 

t ions,  r a t i o  of actual  surface to  bulk concentrations, and ef fec-  

t i v e  times t o  reach the f i n a l  concentrations under the assumption 

tha t  the evaporating temperature was 1250' C. The following con- 

clusions can be drawn from Table 4: 



1. me solu te  elements can be divided i n t o  three groups: 
i 

Fe, C r ,  N i -  7L, and Cu evaporate much more slowly 

than Be; kt, Zn, and Na evaporate m c h  more rapid ly  
I 

than Be; A1 evaporates a t  about the same r a t e  a s  Be.  

2. The computed times t o  reach the f i n a l  concentrations 

under normal evaporation conditions (complete l iquid  

mixing) a r e  f a i r l y  constant f o r  the so lu te  elements 

tha t  evaporate mch  slower than B e  ( i  . e . , Fe , C r  , 
4 N i ,  S i ,  and ) being about 4 x 10 . 

3 .  The computed times t o  reach the f i n a l  concentrations 

f o r  the highly evaporative Mg, Zn, and Na a re  a l s o  

f a i r l y  constant,  but about four orders of magnitude 

smaller. 

4. After correction f o r  l imited l iquid  mixing (Ref. 7 ) ,  

the e f fec t ive  times to  reach the f i n a l  concentrations 

a r e  much more constant, even between the groups of 

so lu te  elements. In pa r t i cu la r ,  the highly evapora- 

t i v e  elements e, Zn, and Na have t h e i r  r e s u l t s  

improved by several  orders of magnitude. 

5. Limited l iquid  diffusion nust, therefore,  be con- 

s idered, pa r t i cu la r ly  f o r  the highly evaporative 

elements. 

6 .  The surface so lu te  concentrations can be changed by 

up t o  s i x  orders of magnitude, so  tha t  the e f fec t ive  

evaporating r a t e s  can be s imi la r ly  changed. 
- - - '_ 
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DISCUSSION AND CONCLUSION 

These and other  s imilar  analyses suggest tha t  the normal evap- 

orat ion equations presented i n  t h i s  Memorandum work surpris ing1 y 

well f o r  the several  a l l o y  systems studied so f a r .  These equations 

general ly  give r e s u l t s  accurately t o  within an order of magnitude 

of the correc t  values, perhaps even f o r  highly concentrated solu- 

t ions (e .g., 20% C r  i n  N i  o r  40% N i  i n  Fe) . Such accuracies 

a re  usual ly  s u f f i c i e n t  f o r  many evaporation s tudies  . 
In other  more c r i t i c a l  s tad ies  , however, ref ined evaporation 

analyses may be needed. In  pa r t i cu la r ,  the e f f e c t  of l imited d i f  - 
fusion and, hence, surface depletion o r  enrichment of the so lu te ,  

must of ten be accounted fo r .  This is t rue  especia l ly  f o r  the 

highly evaporative solutes  such as ,  e.g., Mg, Zn, and Na i n  

the solvent Be. We already have r e s u l t s  tha t  confirm thLs conc 

clusion. Detai ls  of these r e s u l t s  w i l l  be published in  Ref. 7 and 

elsewhere. 
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ABSTRACT 

A new mechanism is proposed t o  expla in  the  forna t ion  of 

growth s p i r a l s  i n  cont ro l led  melt-grown, c r y s t a l l i n e  samples of 

Ba4SrNblo40. Several  dis t inguish iqg  features of these s p i r a l s  

cannot be explained on the  b a s i s  of the  c l a s s i c a l ,  c o r e - f i r s t  

growth theory.  These f ea tu re s  a r e  examined i n  d e t a i l ,  e spec i a l l y  
P 

i n  comparison with the  inherent  o r  implied f ea tu re s  of the classi- 

c a l  s p i r a l  model. Charac t e r i s t i c s  of  the  s p i r a l s  a r e  predic ted 

based on s o l i d i f i c a t i o n  theory, and a r e  found t o  be i n  agreement 

with t h e  observed r e s u l t s .  
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Introduc t ion 

The s p i r a l  growth mechanism was f i r s t  proposed by Frank 
. * e 
C (Ref. 1) i n  1949 and has been developed i n t o  the c l a s s i c a l  BCF 
F 
1 model (Refs. 1-3). S p i r a l  markings had, however, long been ob- 
f 

served on s i l i c o n  carbide c r y s t a l s  (Refs. 4-5). Since 1949, many 

h .; more s p i r a l s  have been observed during evaporation-condensation 

1 + 1 (Refs. 6-7) and s o l i d i f i c a t i o n  (Refs. 8-10). Some of these s p i r a l s  
f *; 

6 a r e  rounded (Refs. 9) while others  a r e  segmented (Refs. 8-9). 

: The BCF model has been able  t o  explain many of the observed 
* * 

' i e f f e c t s  and growth fea tures .  However, i n  our control led c r y s t a l  

. / growth experiments on Barium Strontium Niobates (BSN), we observed 

1 some new phenomena tha t  cannot be e a s i l y  explained by the c l a s s i -  
% 

c a l  BCF model. In f a c t ,  some of these observed phenomena cnntra- 

d i c t  the same model. This paper b r i e f l y  descr ibes  the implications 

of the c l a s s i c a l  BCF model and some experimental r e s u l t s  recent ly  

observed on these niobates i n  our laboratory.  From these r e s u l t s  

: 1 we propose a new s p i r a l  growth model which seems t o  explain b e t t e r  

the  observed e f f e c t s  on the niobate  mater ia l s .  

Exis t i n a  Theory 

According t o  the BCF model of s p i r a l  formation, a nucleus is 

formed a t  a favorable spot  on the  s o l i d  subs t ra t e  surface,  and ad- 

d i t i o n a l  atams then s o l i d i f y  or  condense from the l iqu id  or  vapor 



phase t o  s p i r a l  around t h i s  nucleus,  i . e . ,  t o  form the  s p i r a l .  

The d i s t i ngu i sh ing  f ea tu re s  of t h i s  theory are: 

1. The s p i r a l  s t a r t s  a t  i t s  cen te r  o r  co re  region 

i n  the  form of a screw d i s l o c a t i o n  and s p i r a l s  

ou t .  

2. Adjacent o r  successive turns  of the  s p i r a l  should 

be separated by a t h i n  boundary no th icker  than a 

subgrain boundary, i .e . , angstroms th ick ,  s ince  

even the  g ra in  boundary i n  a po lyc rys t a l l i ne  mate- 

r i a l  is  genera l ly  believed t o  be only 10h o r  

less t h i c k  (Ref. 11). 

3.  The primary temperature grad ien t  i s  perpendicular 

t o  the  plane of t he  s p i r a l  (Ref. 10).  

4. The s t e p  height  i n  s p i r a l s ,  a t  l e a s t  according t o  

the  BCF model, should be only one atomic layer  

th ick .  

Experimen t a  1 Procedures 

By using s tandard s i n t e r i n g  techniques, po lyc rys t a l l i ne  

samples of hypoeu t ec  t i c  cornposit ion (4BaNb206 : SrNb206) were 

prepared (Ref. 12) .  The raw mate r i a l s  used i n  preparing these  

ceramic samples were: barium carbonate,  from J. T. Baker, re- 

agent grade; s t ront ium carbonate,  from J. T. Baker, reagent  grzde;  

and niobium pentoxide, from A.  D. Mackay, 99.9 percent .  The 



s in te r ing  was done a t  l35O0C f o r  more than 80 hours i n  a i r  and 

the  s in tered  mater ia l  was checked f o r  the completion of chemical 

reac t ion  by using an IRD-Guinier camera. 

Direct ional  s o l i d i f i c a t i o n  of the  s in te red  compacts was car-  

r i e d  out  i n  a 4 i n .  long, 3 i n .  diameter alumina cruc ib le  heated 

i n  a v e r t i c a l  tube-type platinum furnace. The temperature gradient 

was varied from 20-40°C/cm by changing t h e  tapping of the r e -  

s i s t ance  wire of the  furnace, and the temperature was monitored by 

using three thermocouples placed a t  three d i f f e r e n t  places.  After 

heating the mater ia l  t o  about 30-40°C above its melting tempera- 

tu re ,  the alumina cruc ib le  was withdrawn from the furnace a t  a 

constant r a t e  of from 1-40 bm/sec, The longi tudinal  and t rans-  

verse sect ions on the r e s u l t a n t ,  elongated samples were then ex- 

amined on the s o l i d i f i e d  specimens. 

New Experimental Results 

The following observations have been made on these melt- 

grown, c r y s t a l l i n e  niobate samples prepared a t  40 pm/sec: 

1. The s p i r a l s  cons i s t  of l i n e a r  or iented segments, 

typ ica l ly  150 pm or  shor te r .  

2. Many s p i r a l s  have only 1 1 2 ,  3 . . . , outer  

linear segments (see Fig.  1 a t  a) . 
3 .  The l i n e a r  segments have been iden t i f i ed  by elec-  

t ron microprobing as proeutect ic  c r y s t a l s .  



4. The spacings (Figs. 1-3 a t  b) between adjacent 

l i n e a r  segments of the s p i r a l s  a r e  a s  wide a s ,  or  

wider than, the thickness of the proeutect ic  cry- 

stals,  i .e . ,  tens or  hu.idreds of pm r a the r  than 

angstroms th ick .  

5. By probing, the mater ia l s  i n  these spacings a r e  

iden t i f i ed  as being of e u t e c t i c  composition 

(Figs. 1-3 a t  b) . 
6. Both s ing le  s p i r a l  (Fig.  2 ,  top) and paired s p i r a l s  

(Fig. 3 ,  r i g h t )  occur. 

7 .  Clockwise and counterclockwise paired s p i r a l s  e x i s t ,  

even only 70 pm apar t  on the same sample cross  

sec t ion  (Fig. 3 a t  c ) .  

8. The two adjacent ,  clockwise and counterclockwise 

s p i r a l s  (Fig. 3) share t h e  same s ing le  c r y s t a l l i n e ,  

outermost l i n e a r  segment (Fig. 3 a t  d) . 
9. During s p i r a l  formation, there  was a longi tudinal  

temperature gradient  of about 40°C/cm perpendicu- 

lar t o  the a x i s  of growth s p i r a l s .  

10. The growth d i rec t ions  of the l i n e a r  segments were 

. often independent of t h e  ex te rna l ly  appl ied,  longi- 

tudina l  temperature gradient  (see F igs .  2-3 a t  a) .  



Discussion I 
Many s p i r a l s  a r e  near i d e a l  he l ices ,  each containing a s fngle  -1  

smooth s p i r a l i n g  segment with no d i scon t inu i t i e s  i n  the change of 

i ts  slope (Ref. 9 ) .  Many other s p i r a l s  a r e  segmented (Refs. 8-9), 
- I 

similar t o  those noted i n  Observation 1. These segments apparently - 1 
follow the preferred crystal lographic or ien ta t ions  which probably i 
coincide with the  d i rec t ions  of f a s t e s t  c r y s t a l  growth or  high 

thermal conduct iv i t ies .  I 
The s p i r a l s  w i t h  only 1 1 2, 3, . . . , outer l i n e a r  seg- I 

I 
ments (Fig. 1 )  appear t o  represent  d i f f e r e n t  s tages of growth, 

from t h e  outermost points  toward the center  or core regions.  The - . I 
hypothesis of complete s p i r a l  formation f i r s t  w i t h  subsequent core 

d isso lu t ion  o r  homogenization :is untenable, because the core would 

be s o l i d ,  according t c  the c l a s s i c a l  theory, and, hence, have 1 I 
l imited mater ial  d i f f u s i v i t i e s .  Solid d i f fus ion  coe f f i c i en t s  a t  : I 
near the melting point  o r  c r y s t a l  growth temperatures i s  typ ica l ly  

2 o i l y  about log8 cm i s e c ,  and the time t o  grow a 100 Gm seg- 1 i 
ment .at  a r a t e  of 40 pm/sec is  only2.5 seconds. The d i f fus ion  

length i n  t h i s  p a r t i c a l a r  case is of the order of - = - ., 
L6bm, that  i s  two orders of magnitude smaller than t h e  segmental - I 

t 

length . 
The f a c t  t h a t  l i n e a r  segments are proeutect ic  c r y s t a l s  (Obs. 3) 

i e  i n  accordancs w i t h  t h e  re levant  phase diagram (Ref. 12) .  
:1 



Observation 4, i . e . ,  t h e  wide spacings between adjacent seg- 

ments, is i n  sharp con t ras t  with predict ion o r  implication of the 

conventional theory. 

Obeervation 5, i . e . ,  t h e  mater ials  i n  the  spacing between 

e p i r a l  segments a r e  eu tec t i c s ,  indica tes  t h a t  the l i n e a r  segments 

f roze f i r s t ,  protruding i n t o  t h e  melt (somewhat l i k e  dendri tes)  

and r e j e c t i n g  high-solute mater ia l s  ahead of the l iquid-sol id  

interface,  and a l s o  on one or  both s ides  of the protruding seg- 

ments, t o  be subsequently frozen a s  e u t c c t i c s .  

The i n t e r e s t i n g  f a c t  t h a t  adjacent clockwise and counter- 

clockwise s p i r a l s  share t h e  same s ingle  c r y s t a l l i n e ,  eutermost 

l i n e a r  segment (Obs. 8) a l s o  appears t o  defy sa t i s fac to ry  explana- 

t ions  according to  the c l a s s i c a l ,  c o r e - f i r s t  X F  growth model. 

The s t a t i s t i c a l  probabi l i ty  is almost n i l  f o r  two independent, 

separated nuc le i  i n  the melt t o  form the two segmented, clockwise 

and counterclockwise s p i r a l s  t h a t  grew t o  reach perzect alignment 1; 
. . ,  and matching widths i n  the l a s t  and camon, outermost l i n e a r  seg- 

me*. We would have t o  hypothesize t h a t  one nucleus must be t rans-  

mit t ing complicated s ignals  on grcwth c h a r a c t e r i s t i c s ,  such a s  

growth r a t e s ,  growth d i rec t ions ,  . . . through t h e  intervening 1'1.*.1 d .  

This l iqu id  is probably i n  a disordered s t a t e ,  s o  tbt a t  bes t ,  the 

s ignals  are transmitted through with grea t  d i s t o r t i o n  and absorp- 

t ion .  The other  nucleus mus~ simultaneously receive and decode the 

F-7 



s i g n a l  and, fu r theraore ,  take instantaneous , exac t  c o r r e c t i v e  f 
a c t i o n  t o  achieve p e r f e c t l y  matched growth condi t ions .  Even i f  f 
we assume t h a t  somehow the two nuclei  g e w  from opposi te  d i r e c -  ". 
t i o n s  i n  an i d e n t i c a l l y  and ins-nn:aneously matching manner, we : I 
s t i l l  expect  t h e  two approaching c rys  te l  segments t o  be separated I 
by a solute-enriched l aye r ,  due t o  the  l imi ted  l i q u i d  d i f f u s i o n  - t 

,t 
and s o l u t e  pi le-up i n  f r o n t  of the  growth i n t e r f a c e .  A l o s s  oi 

e p i t a x i a l  r e l a t i o n s  must occur, i . e . ,  two c r y s t a l l i n e  segments I 
must f o m ,  one on each s i d e  of a d i s t i n c t ,  so lu t e - r i ch  laye 

Such was no t  observed. 

It is  a l s o  i n t e r e s t i n g  t o  note  t h a t  the  e x t e r n a l  o r  p r i m r y  .- 1 
temperature grad ien t  i s  t ransverse  t o  t h e  a x i s  of the  s p i r a l  (Obs. 9 ) ,  

- I  . 
r a t h e r  than longi tud ina l  t he re to ,  i n  disagreement w i t h  the  norm31, 

s p i r a l  growth p red ic t i ons .  Some segments must, therefore,  grow i n  ;I 
the  d i r e c t i a !  of ch i s  primary temperature g rad ien t  ( a t  f a s t  growth : I  
rates), some must grbw a g a i n s t  the  temperature g rad ien t  ( a t  40°C/cm, 

or over 0.6*C wer 150 wm), and sane o t h e r s  must grow e s s e n t i a l l y  - I 
i sothermal ly .  

A New Mechanism 3 
X t  is, there fore ,  proposed t h a t  a t  least on the  samples re- 

ported here ,  the  s p i r a l s  were formed from ou t s ide  toward the  c e n t e r  

o r  core region.  Such a mechanism has been suggested (Refs. 13-14). I 



A l l  the above observations and discussions,  including the 

$i 83 
f I t &  formation of eu tec t i c s  between the s p i r a l  spacings, can now be 
& a': 

& r ead i ly  explained by the s o l i d i f i c a t i o n  theory (Ref. 15) . Even 

the  growth agains t  a temperature of over O.d°C can be ascribed 

t o  so lu te  pile-up i n  f ron t  of the l iquid-sol id  in te r face ,  and the 

f 
F t - -  r e s u l t a n t  cons t i tu  t iona 1 supercooling phenomenon (Ref. 16) . 

The two adjacent clockwise and counterclockwise s p i r a l s ,  such 

a s  those i n  Fig.  3, most l i k e l y  shared the same nucleus, which was 

probably located i n  the middle of the outermost segment and grew 

i n  opposite d i rec t ions  t o  form the common outermost l inea r  segment 

f o r  the two s p i r a l s .  

According t o  our core- last  s p i r a l  growth mechanism, the com- 

bined e f f e c t  of temperature and so lu te  concentration f i e l d s  nakes 

i t  l e s s  l i k e l y  f o r  nucleation t o  occur a t  the  cen te r  or  core re-  

gions. Only under a spec ia l  combination of phase diagram, =ate- 

r i a l  thermophysical propert ies ,  and externa l  temperature f i e l d s  

(such as when t h e  mater ial  i n  t h s  core region has the highest melt- 

ing point)  can core nucleation become possible .  

When nucleation does occur a t  an outer  corner,  the  growth ap- 

pears t o  follow the out l ine  of some kind of loca l  concentration 

cell ,  often only s l i g h t l y  influenced by the externa l ly  applied tem- 

perature gradient (Figs. 2-3).  This can be seen from the f a c t  t h a t  

i n  our c r y s t a l  growth experiment, the ex te rna l  temperature gradient 



was 40°C/cm, o r  a maximum of 0.6"C over t h e  150 ym outer  seg- 

ments. According t o  the l iquidus of the SrNb2O6 - BaNb206 pseu- 

dobinary phase diagram (Ref. 12), such a temperature difference 

correspcnds t o  a change i n  l iquid-solute  concentration of only 

about 0.3 mole percent. On the o ther  hand, the concentration e f -  

f e c t  from so lu te  segregation and pile-up ahead of the  so l id- l iquid  

i n t e r f a c e  is ,  according t o  t h e  separat ion between l iquidus and 

so l idus  on the same phase diagram, over 30 times g rea te r .  

The proeutect ic  c r y s t a l s  o r  l i n e a r  segments, thus, appear t o  

grow mainly along the isoconcencration l i n e s  general ly  fol loving 

the  c e l l  boundaries, with r e j ec t ion  of so lu te  (segregation coef - 
£ i c i e r  being less than uni ty  here) both longi tudinal ly  ahead of 

the  grown segments and l a t e r a l l y  a t  l e a s t  toward the center  of the 

s p i r a l s .  We could thus predic t  t h a t  f o r  these core- las t  grown 

s p i r a l s ,  the so lu te  concentration of s p i r a l  segments should gen- 

e r a l l y  increase along t h e  segments toward the las t - f reez ing  core 

region. Notice, a l so ,  tha t  the d i f f e r e n t l y  oriented segments shauld 

have d i f f e r e n t  growth r a t e s  and concentration p r o f i l e s ,  The centers  

of  the s p i r a l s  must, i n  pa r t i cu la r ,  have much higher so lu te  concen- 

t r a t i o n s  approaching the eu tec t i c s .  

Hence, a t  l e a s t  i n  t h e  BSN samples, the s p i r a l  growth seems 

to  s t a r t  from the  outs ide inward. 



ht 
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Captions 

t 
I F i g .  1 Broken Spiral Segments on Ba4Sr Nb10030 Melt-Grown 

r 
? Sample Formed a t  40 wm/sec under Temperature 

$ , (  Gradient of  40°C/cm. Magnification 220X 
$ . :  

. f F i g .  2 Segmented Spirals on BaqSr Nb10030 Melt-Grom a t  
1 40 pm/sec under Temperature Gradient of  40°c/cm. 

-L , Magnification 220X 

F i g .  3 Segmented Paired Spiral on BaqSr Nb1003~ Melt-Grown 
at 40 pm/sec under Temperature Gradient o f  40°C/cm. 
Magnification 220X 







APPENDIX G 

STEADY-STATE SOLIDIFICA l ' l o N  TN THE Ni-Sn SYSTEivI 

INTRODUCTION 

It i s  well known that solute redistributes a s  an alloy solidifies from i t s  molten 

state. Pfann (1962) and several  other authors have expressed the instantaneous solute 

concentration c a s  a fullction of the fraction solidified, g,  i. e . ,  

where C is  the initial concentration of solute in the melt, k = c /c  is the segregation 
0 s 1 

constant, and c and c a r e  the solute concentrations in the solid and liquid, respectively. 
s a 

Equation (1) is based on the following assumptions: 

1. Diffusion in the solid is negligible. 

2. ?>a mixing in the liquid i s  complete. 

3. k is constant. 

Frenkei (1946, pointed out that assumption (2)  is hardly t rue  because the diffusion 

coefficient is too smal l  to assume completely mixing. In addition to assumptions one 

and three, Chalmers (1961) assumcd that coiivectiorr in the liquid is negligible and iilui 

solute i s  transported by diffusion instead of being completely mixed. 'Then the con- 

centration of solute in the liquid, c , is, under steady state conditions, a function of 
1 

distance from the solid-liquid interface, x: 

where D is the diffusion coefficient in the liquid and R is the constant growth rate.  



There  is  always an  equilibrium temperature which corresponds to a certain 

solute concentration in the liquid phase. Chalmers (1964) pointed out that supercooling 

can occur if the temperature gradient, G, i s  controlled in such a way that the actual 

temperature in the liquid phase is  lower than the equilibrium temperature.  Figure G-1 

shows that no supercooling can occur if G is  l a rge r  than the cri t ical  temperature 

g r a d i e n ~  of supercooling G If G is  smal le r  than G , however, a distance of super-  
C ' C 

cooling, x ,  exists .  

The constant value of k in Eq (1) and (2)  i s  only a simplified assumption, since 

we know that the solidus and liquidus curves  in most phase diagrams a r e  not l inear.  

In this appendix we will inves~igate  the e r r o r s  involved in calculating the cr i t ica l  tem- 

perature gradient G and distance of supercooling x xhen a constant k is assumed. F o r  
C 

convenience in comparison, three models a r e  assumed. The f i rs t  i s  a linear model in 

which both the solidus and liquidus curves  a r e  l inear functions of the melt temperature.  

This model corresponds id constant k. both the solidus and liquidus curves  should, of 

course,  pass  through the point representinp the temperature of solid-liquid equilibrium 

of the pure solvent, and the slopes should be obtained by a :east-square fitting of the 

experimental data over  the ent i re  solidification range. The second model is a pseudo- 

l inear model. This model i s  the same  as the f i r s t  one, except that thc slopes of solidus 

and liquidus curves  a r e  the slopes, o r  tangents, a t  the melting temperature of pure  

solvent. The third model i s  a quadratic model for  both the solidus -.nd liquidus curves,  

with the s a m e  terminal  restr ict ions that they precisely pass through the solid-liquid 

equilibrium points for the pure solvent and eutectic. The shapes of the curves  are also  

determined by least-square fitting of the experimental data. 

THEORETICAL BACKGROUND 

To express  the liquidus and solidus curves ,  C and C in t e r m s  of the melt 
1 s' 

temperature,  we choose T the equilibrium t e m p e r ~ t u r e  of pure  solvent, a s  the origin 
E ' 

of the coordinate, s o  that the constant t e r m s  in both liquidus and solidus d rop  out 

automatically. Then the relation between the new coordinate o r  modified temperature 

T and old coordinate T '  is T = T - T t  . 
E 



X 
DISTANCE OF SUPERCOOLING 

Fig. G-1 The Effect of R/D on x 

G -3 



F o r  the l inear  model, the liquidus cu rve  and the sol idus cu rves  can b e  expres sed  

and 

F o r  the quadrat ic  model: 

C 
S *l k = - = - =  constant 

C1 A 1 

and 

which i s  a function of the t empera tu re ,  T. If the tempera ture  1' is sma l l ,  i .e.,  il' the 

concentrations of solute c and c are sma l l ,  then the higher-degree t e r m s  of t ~ m -  
s 1 

pe ra tu re  in both C and C are negligible, we thus obtain a new constant for  k ,  i .  e. ,  e s 

which i s  the pseudo-linear model. 

G can  b e  found by the  chain r u l e  relationship: 
C 



;\C 
Both j? /?x and " 1  ?IT can be found from Eq (2). (3), and (6). Thus: I 

RT 
- 0 

For  the linear case,  - - 
G c  1 D (1 -kl) 

0 
r For  the pseudo-linear case ,  = -- 

Gc2 D (1 -k2) 

R'l 
r For  the quadratic case ,  Gc3 - - -(I-k ) 

A12 + A22T0 
D 3 A12 + 2A22To 

where Tois the equilibrium temperature of solid-liquid interface expressed in the new 

coordinate system. The real  temperature i s  T'  = TE - T . 
0 

The distance of supercooling can be found by introducing the equation for the actual 

temperature in the liquid phase, after  transformation into the new coordinate system: 

T = T  - G x  
0 

(13) 

Thus: 

From Eq (3), C = Al (T -Gx) a 0 

From Eq (6 j, C = A ( T  -Gx) e 1 2  o 

From Eq (6), = A ( T  -Gx) + Ag2(To-Gx) 
2 

1 2  0 



Then x can be found by equating Eq (14), !15), and (16) to Eq (2) for any model, and any 

given R/D and To. 

COMPUTATION SCHEME 

To find the values of Alp B1, A12, A22, B12, and B , least-square computer 
2 2 

T 
programs were used which minimized the total e r r o r  y = Z [l-A12 c - A22 L ~ ] ~ ,  C 

a a 
Since we want both end points to be precise, we solve the following simultaneous 

equations for A and A22: 1 2  

and 

where C and T a re  the liquid concentration and temperature at the eutectic point e u u 
respectively. The same procedure can be used to compute A B1, ~ n d  B12, B22 and 

the required data sets  ~bta ined  from the phase diagrams. 

To find kts and Gcls. Once we have obtained those coefficients, we can compute 

kls and Gc's from Eq (5) and (8). and ( l o ) ,  (111, and (12), respectively. 

To compute the distance of supercooling, x. From equations (7 ) ,  (16). and (2). 

we solve for x, for the quadratic case, as follows: 

Since the above equation is nonlinear, Newtons method can be used to find x by 

minimizing y, where 



For  the linear c a m :  

and for the pseudo-linear case: 

where k is the segregation coefficient a t  a given solid-liquid equilibrium temperature. 
0 

COMPUTATION RESULT 

A Ni-Sn System, in which both the solidus and liquidus cur. I.,., a r e  parabolas, was 

chosen for  the study. Sn i s  the solute and Ni is the solvent in this system. Ten equili- 

brium data points, as tabulated below, were obtained from the phase equilibrium diagram 

given by Hansen (Ref. 4): 

d TABLE G-1 THE Ni-Sn PHASE DIAGRAM 



From these data, the required coefficients can be obtained by a least-squaw method: 

The segregation constants k's  for the three Afferent clases, i .  e.,  k( l ) ,  k(2). and 

k(3) corresponding to the linear, pseudo-linear, anc! quadratic models, respectively, 

were computed for a given T and a r e  listed in Table G-2. 

TABLE G-2 VARIATION OF THE SEGRYGATION COEFFICIENTS 
WITH TEMPERATURE FOR THE Ni-Sn SYSTEM 

The deviations of segregation constant k for the linear modeld from that of the 

quadratic model a r e  given i n  Table G-3. 

TABLE G-3 DEVJATIONS O F  THE SEGREGATION COEFFICIENTS 

The critical temperature gradients, Gc, were computed by Eq (10). !11), 

and (12) for any given R/D and T and a r e  listed in Table G-4. Computed distances 

of ruparcooling, x, are given In Table 5. 

IN THE Ni-Sn SYSTEM . 
T, K , 
273. '1 
283.1 
298.1 
323.1 
373.1 
423.1 
473.1 
523.1 
573.1 
604.1 ; 

(K( L)-K(3))/K(3) 
0.86043 00 
0.7tC?E 00 
0.61783 00 
0.42213 00 
0.12583 00 

-0.87903 -01 
-0.2493E 00 
-0.37553 00 
-0.47703 00 - 304E 00 

(K(2)-K(3))iK(3) - 
0.0 

-0.5574E -01 
-0.13043 00 
-0.23563 00 
-0.39493 00 
-0.50973 00 
-0.59653 00 
-0.66433 00 
-0.71893 00 
-0.74763 00 

J 



TABU M COMPUTED Uttl'tCAL TEMPERATURE GRADIENTS 
IN THE Wi-& SYET EU rOll THE THREE MODEIS 

r 
f, K R / D  Gc(l) Gc(t) GcC31 

173.1 0.lWOE OQ 0.0 0.0 0.0 
#rS. 1 0.1000E 01 0.709tE 1 0.6437E 01 0.84SIE 81 
m3.1 0.1BOQB 01 0.17T3E Ot 0.2lOsE 04 O.zlO?E 01 
S¶S. 1 0.1OBeE 01 0.SSIBE 02 0.lzlBE 02 0.4tllE 01 
an.  1 o.loeoc: 01 O . ~ O B ~ E  02 O . ~ I ~ W E  04 0 . ~ 0 2 ~  02 
rn. i u.luew 01 o.1001~ 03 0 . 1 4 ~ 4 ~  QO 0 . 1 2 ~ ~  BS 
473.1 O.1BOQE 01 0.14lnE 03 0.1687E 03 0.1-E 03 
525.1 0.1000E M @.1773E (U 0.2lOBE f3 e.2073E W 
513.1 0.10QQE 01 U.tl%#E 85 0 . W l E  eS 0.24SrE 03 
So(. 1 0.1OOoE 01 0 . M a E  W O.2793E US 0.4(;SlE W 

273.1 0-IOOE 01 0.0 0. 0 0.0 
&IS. 1 0.0500E 81 0.1773E 02 0.2trnE 02 0.2lmE 03 
298. 1 O.2MiOE 01 O.US3E W 0.5273E 02 0.5SYE Of 
an.  1 0 . 2 s ~ ~ ~  01 O . ~ I W ~ E  02 0.1055~ 03 0.1053~ a? 
373.1 O.25OOE 01 0.17TJE 03 0.2109E OJ O.2lOgE 03 
423.1 O.WJ08 01 O.ZR(iOE 03 0 . I W E  03 O.3141E 03 
413.1 0 . S W  01 O.354UE 05 0.4219E 03 0.1171E 03 
523.1 0.2SOQE 01 0.U33E 03 0.5273E 03 O.5lS2E 
873.1 0.05BBE 01 O.SJ19E 03 0.8328): 03 @.BIBHE 03 
604. 1 O.SWE 01 0.5nB9E 03 0.6SNtE 03 0. li7Y3E 03 

273.1 0.5OUUE Ol 0.0 0.0 U. 0 
283. 1 0.5000E 1 0.3516E UZ O.1219E 02 0.4217E nZ 
W. 1 0.5OQOE 01 O.StUi5E 84 0.1065): 03 0.1054U U3 
523.1 0 . 5 ~ 0 0 ~  m 0.17'13E &3 Q.41a)E 03 O.2lOSE 03 
373.1 U.5000E 01 0.354IE 03 0.431BE 03 U.1201E $0 
123.1 B.5OQOE 01 0.5319E 03 O.(imE W O.SW2E 03 
173.1 Q.li000E Q1 0.70B2E QJ O.Mi37E 03 U.#MlE 03 
523.1 0.500(1E 01 O.IMI5E W 0.1S5E 01 0.103GE 81 
573.1 0.5880E Ql  O.lOslE 01 O.IPG(iE O( 0.1232VLE UI 
a@. 1 0.i50ooe oi 0.1174~ 0.4 O.ISNE 04 0 . 1 ~ 7 ~  IM 

273.1 0.10WE 03 0.0 0.8 0.0 
S3.1 0.100QE QS 0.7092E 09 0.N437E 03 O.U1ME 03 
298.1 O,lBO(IE 03 0.17T3E DL O.PWE 04 0.2107E M 
JIJ. 1 0 . l W  03 0.354irnE OJ 0.4219): 01 0.1211E W 
373.1 0.1000E 03 0.7UBZE 61 0.S437E M 0.X4IELE I 4  

4OJ. 1 O.1WE 93 Q.1UtCIE 05 O.1WE 05 0.1256E OT, 

473.1 0.IBBQE P 0.141RE 85 O.lEUI7E 05 lHill.l#x;*k a5 
;iiJ. 1 0.1OOOE QJ 0.177315 is 0.21mE 05 0.2073E 05 
L73.1 0.109QE 03 0.911Q\15 #r 0.S31k. 06 0.2JME 05 
604.1 Q.tBOOE O? O.W?IE 08 O.t?BSE 05 0.26tHill9E OTB 

A 

* dt*=*.er of w i m ,  x, wen can 'cd by &t( (IS), (IB). Md (20) rnr given 

V . h w o [ l . ' l *  ! To. 
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T A B U  G-5 O>blPUTED DI%TANCES OF S t i t .  3COOLISG IN THE Ni-&I SYSTEM 
THE 'iHREE MODES (Shed 3 of 3) 



The devistionrr of critical temperature gradients for the linear model, from the 

quadratic model for R/D = 100, are listed in Table G-6. 

II TABLE G-6 DEVIATIONS OF THE CRITICAL TEMPERATURE 
GRADIENTS IN THE Ni-Sn SYSTEM 

111 The deviations of the distances of supercooling for the linear models from the 

quadratic model are given in Tables G-7 and G-8. 
1-1 



TABLE G-7 DEVIATION8 OF THE DLBTANCES OF THE SUPERCOOLING FOR MODEL 1 
PROM THOSE OF MODEL 3 (x1-x3)/xS IN THE Nl-8a SYSTEM 



TABLE 0-8 DEVlATmNS OF THE DIllfANCgl OF THE BVPERCOOUNQ WR MODEL 1 
FROM THOEE OF blODEL S (5-x3)/x3 IN THE N1-8a SYSTEM 



DISCUSSION 

The segregation constant k. The solidus and the liquidus for the Ni-Sn system 

display moderate curvatures (Haneen 1958). The errors involved for linear model 

assumption are illuetrated in Fig. G-2 through G-6. 

Figures G-2 through (3-6 show that, for the pseudo-linear model, the errors of 

k, G ud x are always approximately p ropor t io~ l  to To, which in turn is proportional 
C 

to the concentration of solute and zero for pure solvent. For the segregation coefficient, 

k, the error is about 0.3%/degree K, with the rate of change slightly decreasing at 

higher To. For Gc, the error i s  &out O.OO$/dsgree K, with the r i t e  of change slightly 

increasing at higher To. For x, the error  is about O.ll%/degree K, with the rate also 

slightly incraasbg at higher To. For the linear model, the error  in k varies from 

+a% to -55%. the rate of change being about O.Q%/degree K. The error  in G is always 
C 

negative at about -16% to -13%. the average rate of increase being 0. Ol%/degree. The 

error of x varies from -25% to +38% for To = 0 to To = 331K, the average rate of change 

being about +0.19%/degree. 

Ae expected, Table 0-2 shows that 5 .ad k2 are independent of the melt tem- 

perature. while k3 increases by wer four times (from 0.156 to 0.6192) as the modified 

temperature To increase. from 0 K to J31K. Table 0-3 shows that, compared to kg, 

5 is overestimated by 86% at small temperature dffference and underestimated by 53% 
0 at To = 331 (eutectic point); ud kg is always underestimated, the amount being pro- 

k. - k, 
portlonal to the modified temperature, To. A relationship between 1 J and 

k, 

'2 - '=J with To is shown in Fig. 0-2. 
4 

The critical temperature gradient. From Eq (11). (12). and (13). w e  see that 

OC , Gc , and Gc in Table G-4 ehould be linearly proportional to R/D and To, and 
1 2  8 

Gc and G 6bould ale0 be proportional of (1-k). Table 0-6 and Fig. 0-3 ahow how 
1 ' a  



C 

0.2 - 

MODEL 1 THE 

-0.4 - 
MODEL 2 -THE 
PSEUDOLINEAR MODEL 

-0.6 - 

-0.8 I 

#10 400 , t- To, K boo 600 



Gcl - Gc3 
MODEL 1 

Gc3 
vr To, INTERFACE TEMP 

A 
MODEL 2 THE PSEUDOLINEAR MODEL 

, - 
.a 

- - A 

Y - .. 
Y .. .. 

To, K 

0.1 

(3 

E 
Z 

E a 
5 
X 

d 
E a 
0: 
Y 

-0.1 

- 
- 
- 
- 
- 

.. 0 1: 

- 
- 
- 
- 
- 
- 
- MODEL 1 THE LINEAR MODE 

- 
- - 
- 1 - - 

- 
-0.2 I I I 

300 1 
400 m 600 



- - " vs To, INTERFACE TEMP 
x3 

a RID = 0.5 

@ RID = 1.0 

@ RID = 2.6 

@ R/DmlOO 

Mg, 04 Frr@tional Deviation in x vrr To, for Model 1 
G-19 



Fig. G-5 Fractional Deviation in x vs To, for Model 2 
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Fig. G-6 Distance of &percoolfag vs To, for Various G and R/D, 
Model 1 
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nluch C; I ti ~ . : t r ~  t ~ ~ , \ , r ; ~ t c  from ti . i i a l l  ( 's :lrc:, aluays underrsti~natctd 
C' L' C C 

1 2 :3 1 
I)y J)out 1 .i ; ; l ~ u t  (; ' s  a1.c ali+.ays slightly o~cr 'es t in~atcd !'rr,m zero up to 3', . 

C , 
Y 

'L'he di.;tancc of' supercooling, \4'hen Ii I )  x . 3  i l l  Eq , l n  r ,  ( l ' J ) ,  anct (201, then 
-R 'I) 

e x L 1 -- I .  F:qu&tio~ls (In), (19), and (20)  call then be sol t rd fur s. 

T 
0 

Linear model: x --(1-kl) 1 (; 

'I'hc* values of s's in Eq (211, (22), and (23 )  correspond to the BC sectin)n in Fig. ( , - t i .  

;n this section, s is proport;onal to 'l' but in\.ersely proportional to ti. 'Sht~ portion of 
0 

Fig. G-6 for R 'D xc. TJ corresponds to the A R  section, I f  R ,i> is so small th:d G ,(; , 
C 

{rhich corl-cr;ponds to  cur1.e (1) in Fig. G-1, then !here is no supercooling. This condition 

of no supercooling continues as H/Il  increases, until G -t G . If  i3 L) lncrtJaseo again, 
C 

then .u continues lo in~l -case ,  n'hicb corresponds to curves (3) and ( 4 )  in Fig. G-1. 

Table G-7  and Fig. G-4 show that the fractional deviation of s , clcfined as (s  -s j's 
1 1 ' 3  3' 

i f ;  undercstimnted by al~out 3u.,t at small  values 01 modified melt ternplir:lturcs T, but 

o\-crcstimated by about 4O'i at large values of T. Table G-U and Fig. G - 5  shots that the 

fractional dei intion of s definsd as (x2-s3).'s3, is overestimated from U to 1U,; a s  
2' 

the .nodiflei1 temperature increascu from 0 to 331K, i.e., as the --itelt temperature 
0 

decreases from the melting point of pure Ni (l726K o r  1455 C) to the Ni-Sn eutectic* 

temperature (1397K o r  1 1 2 1 ~ ~ ) .  
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